5.灌漿料的攪拌<
根據定位點位置進行鉆孔,成孔時需保證鉆頭位于定位點中心,并與梁底面垂直,無偏移。且孔深應滿足植筋要求。/div>
按灌漿料重量的12%-14%的加水量加水攪拌,水溫橋梁結構裂縫的表面封閉修補,常用方法有:填縫,表面抹灰,鑿槽嵌補。表面粘貼和表面噴漿等。關于裂縫的內部壓漿修補法,可參閱下~節內容:對于嚴重影響結構強度和港剛度的裂縫,則需做結構補強加固處理。填縫是磚石砌體裂縫修理中最簡便的一種方法。操作時,將縫隙清理干凈,根據裂縫寬度不同分別用勾縫刀,抹子,刮刀等工具進行操作,所用灰漿通常采用1:2.5或13水泥砂漿,一般不得低于砌筑灰漿的強度。填縫處理后可在美觀,耐久性等方面起到一定作用,面對砌體的整體性,強度等方面所起的作用甚微。以5~40℃為宜。采用機械攪拌時間一般為1~2分鐘;采用人工攪拌時,宜先加入2/3的用水量攪拌CFRP片材體外預應力加固相對于CFRP片材普通粘貼加固的優越性。并驗證這一CFRP預應力加固技術的可行性。試驗通過制作相同的鋼筋混凝土加固構件,給予相等的CFRP加固量,來考察不同加固方式產生的加固效果。最終由承載力、撓度、極限應變、變形性能等試驗結果來反映。2分鐘,其后加入剩余用水量繼續攪拌至均勻。
6、養護
(1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行攪拌成的水泥漿分別注入標準容器(100mm燒杯)經靜置一定時間(一般為3小時)后,其泌水體積與原水泥漿體積之比。攪拌成的水泥漿三小時后泌水率在2%以內,不大于3%,泌出的水24小時內應被漿體完全吸收。養護,或本文通過對地鐵隧道襯砌結構所處的特殊環境進行研究,以雜散電流、碳化和氯離子侵蝕引起地鐵襯砌結構破壞為主要影響因素,研究了各自對鋼筋銹蝕產生影響的機理,確定三種影響因素對鋼筋腐蝕程度和規律,比較分析預測模型,研究分析得出牛荻濤模型預測結果最接近試驗結果。最后,對西安市地鐵二號線南稍門~草場坡區間隧道襯砌結構進行了壽命預測,預測結果均能滿足地鐵100年設計使用年限。根據以上研究內容,提出防護措施,其成果可用于指導地鐵結構設計與施工。在灌漿層終凝后立即灑水保濕養護。
(2)冬如果結構上的各種作用、作用效應以及結構抗力均已確定清楚且足以反映結構的受力實際,則據此進行的設計在正常施工、正常使用的前提下結構應該滿足相應的預定功能要求,在設計使用年限內不致發生意料之外的病害;诂F有的分析理論和分析手段,結構在確定作用下的結構反應(內力與變形)能比較可靠地予以確定,這已為眾多的現場和室內荷載實驗結果所證實。季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的產品用途
應用范圍
1、植筋。
2、大型設備及精密設備地腳螺栓灌注,機器底座二次灌注。3、低負溫下后張法預應力鋼筋混凝土孔道灌注。
4、鋼結構與混凝土固接的二次灌注。
5、設備基礎、螺栓孔、道路、地坪、路枕等的快速搶修鉆孔按設計圖紙要求明確螺栓錨固位置、成孔直徑及錨固深度。。
6、低負溫下其它灌注施工。
7、混凝土修補加固。
⑵、1.建筑物的梁、板、柱、基礎、地坪和道路的補強、搶修、加固。
2. 以及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
3. 地鐵、隧道、地下等工程逆打法施工縫的嵌固。
4. 適用于機器底座、地腳螺栓等設備基礎灌漿。
5. 灌漿料可進行地腳螺栓和鋼筋的錨固及結構補強。
★灌漿料的施工步驟
1、 按灌漿料重量的12-15%加水量加水攪拌(機械攪拌2-3分鐘,人工攪拌5分鐘以上)2、 支設模板并用水泥(砂)漿、塑料膠帶封堵模板連接處以確保不漏水、漏漿。
3、施工完畢后應立即覆蓋塑料薄膜并加蓋草簾或棉被陰濕養護3-7天。
4、將攪拌均勻的灌漿料從一個方向灌入灌漿部位。必要時可借助竹條或鋼釬導流,可適當振搗或輕輕敲打模板。
5、準備攪拌機具、灌漿設備、模板及養護物品,清理灌漿空間并提前將混凝土表面潤濕。
6、使用溫度為-10℃至但是,由于我國存在著廣泛的氯化物為主的腐蝕性環境,包括海洋與沿海、北方地區植筋膠的用量計算:∏×(鉆孔半徑平方-鋼筋半徑平方)×鉆孔深度×富裕系數(一般為1.15)例如:∮20鋼筋,鉆孔25MM,深度以15D為30CM,植筋用膠量(ML)=3.14×(1.25CM×1.25CM-1CM×1CM)×30CM×1.15,植筋用膠量(KG)=植筋用膠量(ML)×膠泥密度。在冬季撒化冰鹽和工業鹽污染的環ITZ的綜合分析比較不同直徑的同類鋼筋可知:HPB235、HRB335、HRB40第和HRB500四類鋼筋銹后名義力學性能的整體退化情況較為類似;通過對實驗數據的整體分析,得出了綜合考慮各類各直徑鋼筋的鋼筋銹后名義屈服強度、名義極限強度和伸長率與鋼筋質量銹蝕率的關系;鋼筋銹后的實際屈服強度和實際極限強度都隨鋼筋質量銹蝕率(或平均截面損失率)的增加而減小。結構和長度,對離子的擴散影響明顯。ITZ的結構與集料質地和膠凝材料的性能有密切關系。石灰石質集料與普通硅酸鹽水泥的膠結性能要比花崗石質集料要好得多,這是可能是因為石灰石質集料與水泥水化產物根據前面的調查、分析與試驗,雖然該大橋主跨部分總的壓漿飽滿率只為73.3 ,但是預應力鋼絲的平均腐蝕比0.27 還由于溫度、收縮作用,同樣會產生應力集中而導致裂縫。對此可采。涸诳锥此倪叴钆洵h向鋼筋、鋼筋網片或護邊角鐵。應盡量避免結構的斷面突變而產生應力集中。當不能避免斷面突變時可作局部處理,將斷面做成逐步過渡的型式,同時增配抗裂鋼筋。要小,且都是均勻腐蝕,并沒有出現坑蝕現象。如此微小的腐蝕產生的截面削弱現象,對材料的力學性能影響非常之小,甚至可以忽略。這說明:在裂縫深度沒有達到預應力孑L道所在位置,并且孑L道具有良好的封錨時,孑L道壓漿的飽滿率與預應力力筋的腐蝕程度沒有明顯的相關性。但是,不密實的孑L道壓漿使得預應力力筋在孑L道內能自由滑動,而與周圍的混凝土變形不協調,導致平截面假定的不成立。結采用實驗室通電加速銹蝕法對HPB235、HRB335、HRB400及HRB500四類鋼筋進行銹蝕,觀察其銹后截面變化情況,表面銹坑形狀及深度,并通過對其進行拉伸試驗,觀察其銹后力學性能的退化情況。通過分析銹蝕前后鋼筋各項力學性能參數的退化情況,研究銹蝕對鋼筋力學性能的影響,比較不同類型、不同直徑鋼筋銹后力學性能退化的規律;設計對比實驗,比較相同銹蝕條件下高強鋼筋與普通鋼筋的銹蝕情況,研究高強鋼筋的耐腐蝕性。<因預應力筋受到銹蝕而導致結構的安全性降低,在使用35 年后,不得不炸毀重建,在我國以傳統壓漿工藝建造的大小橋已有幾千座危橋待修,在設計使用年限內不得不加固.往往橋梁加固的經費比造橋的費用還要高,人力物力浪費很大。各國對上述原因經過分析,發現后張預應力結構因孔道壓漿不密實而造成的預應力筋銹蝕、斷面銳減、斷絲及應力損失嚴重等致命的質量問題.為此美國曾一度禁止后張預應力結構的應用。/FONT>構受力的體系產生了變化,變成類似于體外預應力的受力形式。并且,在外界的水、空氣等腐蝕介質侵人孑L道時,壓漿飽滿率高的孔道能更好地阻止腐蝕介質沿孑L道縱向的深人。CH發生反應而增加了漿體.集料的粘結強度;相比惰性集料花崗石具有更好的界面結構。同樣,ITZ的結構性能和礦物摻合料、外加劑、混凝土的成型工藝等都有關系。境等,氯離子侵蝕造成混凝土中鋼筋的腐蝕越來越嚴重,不少構筑物都出現了鋼筋腐蝕的問題。近年來的工程調查表明,鋼筋混凝土腐蝕破壞的情況已非常嚴重(例如,有的海港碼頭的鋼筋混凝土大體積混凝土的裂縫問題在國外研究較早。從1900年到1930年,建成的混凝土壩施工中,已開始對大體積混凝土防裂措施進行研究。1915年,美國在愛德荷州建成了世界上第一座高于100m的混凝土壩(壩高107m),即箭石壩(ArrowRock)。在施工中,開始用坍落度測稠度、塑制試件測定抗壓強度,但對加水量仍無嚴格控制,拌制的混凝土仍很稀。由于施工技術上的缺陷,那時的混凝土壩出現了嚴重的裂縫。1930年后,開始注意到大壩混凝土的裂縫問題。到1933年,美國開始修建既然完全防止裂縫發生在實際上是不可能的,而裂縫發生的部位及大小并不見得都會發生危害,一味地以人力、財力來控制裂縫不發生似乎不合經濟性,因此正確的態度是避免有害裂縫的發生,把裂縫控制在合理的范圍之內。裂縫寬度控制是以裂縫會發生、但不產生各種性能上的危害為前提。各國對混凝土允許裂縫寬度的規定不完全相同,這是因為建筑物的地區條件、使用條件、材料標準、測試方法、習慣采用的保護層厚度等不同所致。同時混凝土裂縫的控制應包括控制裂縫出現的時間、控制裂縫出現的部位以及控制裂縫出現的寬度。可以說裂縫控制是一個動態復雜的過程,不應該單單著眼于某一方面的靜態的控制,要關注在什么樣的部位允許在什么樣的時間出現多大的裂縫。世界上第一座高于200m的混凝土壩一胡佛壩(221m高),對大體積混凝土進行了全面的研究。第一次采取溫控制措施,主要包括橫縫分布均為15m,混凝土的水泥用量為223kg/m3,采用低熟水泥,澆筑層厚1.5m并限制間歇期、預埋冷卻水管等。結果表明這些溫控防裂措施是比較成功的。美國在對水工大體積混凝土溫控裂縫方面,在20世紀60年代初已形成了一套比較定型的設計、施工模式。前蘇聯在1977年修建了托克托古爾電站,也形成了一套行之有效的大體積混凝土溫控防製措施,即托克力筋回縮應控制在施工規范容許值內。當回縮值較大,長度又較小時會影響到力筋的錨固性能,應予補償。產生回縮的原因主要有:錨具、夾具、鋼絲沾有油污;錨具不良等。當回縮超量比較普遍時,應更換錨具、夾具。托古爾法。梁、板等使用不到10年就出現因鋼筋腐蝕造成的順筋開裂、剝落。40℃。嚴禁在灌漿料中摻入任何外加劑或外摻料。
★灌漿料的產品特點:
1.微膨脹性:保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
2.灌漿料的耐久性強:經上百次疲勞實驗,50次凍融循環實驗強與用有機膠粘貼碳纖維布加固相比,用無機膠粘貼碳纖維布加固鋼筋混凝土梁可有效提高梁的屈服荷載,對極限荷載提高程度較小。由于在建筑設計中使用屈服荷載進行計算,因此用無機膠粘貼碳纖維布加固鋼筋混凝土結構,其強度可以滿足設計要求。度無明顯變化。在機油中浸泡30天后強度明顯提高。
3.灌漿料的高強、早強:1—3天抗壓強度可達30—50Mpa以上。4.可冬季施工:允許在-10C氣溫進行室外施工。
5.自流性高:可填充全部空隙,滿足設備二次灌漿的要求。CGM-1通用型灌漿料,流動性280以上,強度等級,65兆帕以上。高強無收縮灌漿料以特種水泥作為結合劑,特選高強度材料為骨料,輔以高流態,微膨脹,防離析等物質配制而成。
灌漿料具有質量可靠,降低成本,縮短工期和使用方便等優點。從根本上改變設備底座受力情況,使之均勻地承受設備的全部荷載,從而滿足各種機械,電器設備(重型設備高精度磨床)的安裝要求,是無墊安裝時代的理想灌漿材料。
★灌漿料的參考用量:
參考用量計算以2.28-2.4噸/立方米為依據,計算實際使用量。
★灌漿料的包裝儲運:
1、灌漿料為50k各種型號的硅酸鹽水泥中,還不能說某一型號水泥的收縮肯定比另一種大或小,但可以肯定的是水泥中的石膏含量對收縮值有重大影響,水泥廠通過優化石膏含量來調節由于水泥組分不同造成的收縮差異。此外,水泥細度愈大,收縮量會有所增加,增加水泥的比表面積,會采用粘貼碳纖維布加固鋼筋混凝土梁時,在貼片端由于片端剛度突然變化,引起應力集中現象,從而在碳纖維片材端部存在較大的剝離正應力,當剝離應力超過粘膠層和混凝土的粘結強度時,貼片端剝離混凝土表面而失去加強作用。當粘膠強度大于混凝土抗拉強度時,可能使粘膠層連表面層混凝土一起剝離,導致破壞。歐在彈性理論范圍結構中的拉應力或多或少由收縮、溫.度等變化引起的。實際結構中單向拉伸很少,更重要的是多向應力包括地震作用下的復合受拉狀態。這意味著無論荷載直接作用或其他因素的間接作用,混凝士的各組分基本上呈受拉破壞,因此,混凝土抗拉強度在實際工程的斷裂機理中有重要作用。一般認為,抗拉強度控制真空灌漿除了傳統的壓漿施工設備外,真空灌漿還應具有專用設備。灌漿泵一般采用UBL3螺桿灌漿泵,其最大壓力應達到2.5 MPa,其最大壓力應達到2.5 MPa,同時配備達到3.0 MPa壓力表;SZ-2型真空泵(極限真空4000 Pa);SL-20型空氣率清器及配件;PHL塑料焊接機及DN20mm控制閥;氣密錨帽等真空灌漿專用設備。混凝土的開裂進度從而影響其耐久性、與鋼筋的粘接、乃至剛度和動力阻尼效應等性質。抗拉強度可由直接拉伸試驗或間接拉伸試驗確定。內對片端剝離應力的計算給出了解析解。但由于混凝土截面開裂后,將發生應力重分布,對不同砌體強度的植筋試件進行有限元對比分析,分析結果表明,隨著砌體強度的增加,其極限抗剪承載力也得到提高,粘結面應力分布也越來越均勻。說明剪切銷釘不僅直接承擔剪力作用,而且改變了粘結面的應力分布;增加銷釘的直徑并不能有效提高粘結面的抗剪強度。粘結剪應力分布不再連續,特別是在鋼筋屈服以后情況更為嚴重。因此不能完全反映整個碳纖維布與混凝土粘結界面的應力分布情況,其邊界條件不能簡單地按材料力學的方法選擇。楊勇新閉考慮了開裂后,粘結剪應力和剝離正應力分布的不連續性。導致水泥水化速度的加快,而水泥水化速度的加快會導致水泥石中凝膠體結晶粗大,水泥內部毛細孔含量增多,同時還會造成水泥石中抑制凝膠體收縮的未水化水泥顆粒數量及體積的減小,從而導碳纖維布層數越多,布帶寬度越大或間距越小,則加固梁的抗剪承載力提高得越多,而且在碳纖維布用量相同的情況下,布條問距小的方案要優于布條層數多的方案。試驗還指出用碳纖維布加固梁時,碳纖維條之間的距高不宜過大,否則不但起不到良好的加固效果,反而會降低原構件的抗剪能力。致混凝土各齡期和總體的收縮值增加。g袋裝,存放在通風干燥處并防止陽光直射。
2、保質期為3個月,超出保質期應復檢合格后方可使用。
★灌漿料的產品介紹
①、產品特點
低水膠比
水膠比僅為0.27±0.01;
②產品用途
廣泛適用于各種梁體預應力管道壓漿及設備基礎、錨桿等構件灌漿,同時也可用于核電站殼體灌漿、混凝土疏松、裂縫和孔洞等缺陷修補。
灌漿料的高穩定性
漿體3h自由泌水率和4h鋼絲間泌水率均為0;
微膨脹性
3h產生0~2%的膨脹,28d膨脹率控制0~2%之間;
灌漿料的早強高強
高耐久性
28d的抗凍等級大于F500,28d的氯離子擴散系數為1.25×10m/s;為了解決規律性裂縫,首先應選擇合理的計算模型,我們認為“地基上的長墻”作為計算模型是比較符合實際的。由于影響工程裂縫的因素是很多的,并且它們是很復雜地相互作用著。任何理論都不可能精確的考慮到所有起作用的因素,抓住主要因素。在基本模型假定的基礎上,發現引起裂縫各主要因素之間的關系,尋求其中規律性問題,其精確程度是能達到解決工程問題之目的。當然.在今后的理論上還在不斷的改進和進一步精確化。
1d抗壓強度≥30Mpa,28d抗壓強度≥50Mpa;
灌漿料的高流動性
適宜的凝結時間
初凝≥5h,終凝≤24h;
漿體的出機流動度可達10S,60min后流動度仍保持在25S以內;
灌漿料主要由水泥、專用外加劑,并輔以多種礦物改性組分和高分子聚合物材料配合組成。具有低水膠比、高流動性、零泌水、微膨脹、耐久性好的特點,施工時,直接加水攪拌使用,經交通部科技司鑒定產品各項性能均達到國際領先水平。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西景德鎮C60灌漿料哪里有賣|江西灌漿料工廠。