江西樂山無收縮灌漿料廠家|江西灌漿料工廠;炷翗嫾S喑休d力的計算是耐久性評估的一項重要內容,但要較為準確計算鋼筋混凝土構件的剩余承載力,按規范中給定的常規計算方法往往是不夠的。這是因為鋼筋混凝土構件在鋼筋銹蝕后的各種非線性行為十分明顯,尤其是鋼筋與混凝土之間的粘結行為。此時借助有限元分析是十分有效的,而有限元分析結果的準確程度與本構關系的合理性有很大的關系,包括銹蝕鋼筋的力學本構關系和銹蝕后的粘結-滑移本構關系。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料。 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚攪拌好的漿體每次應全部卸盡,在漿體全部卸出之前,不得投入未拌和的材料,更不能采取邊出料邊進料的方法。安裝在壓漿端及出漿端的閥門和接頭,在灌漿后1h內拆除并清洗干凈。度30mm<δ<200mm的設備基這可能源于配比C混凝土硬化后,體系內堿含量高,早期能夠更多地消耗進入混凝土內部的侵蝕性離子或者水泥水化產物的穩定性要好,從而延緩了混凝土內部結構的劣化;后期,侵蝕性氫離子進入體系后,加速了內部結構劣化。當礦粉摻量小于50%時,一方面降低了混凝土中的游離Ca(OH)2的含量,也可能從另一方面改變了水泥水化產物的微觀結構,降低其在酸性環境下的穩定性,而使混凝土的耐酸性能下降。當摻量達到65%時,水泥水化產物性能發生變化,在酸性環境下的穩定性提高,從而提高了混凝土的耐酸性能,延緩混凝土基體的強度性能劣化速率。眾所周知,大摻量礦粉能夠改善混凝土的各種性能,比如耐硫酸鹽侵蝕性能,耐海水侵蝕性能等。但是大摻量礦粉混凝土由于其早期強度低以及對養護措金屬表面與周圍介質發生化學變化及電化學作用而遭到的破壞,叫做金屬腐蝕。如果這個破壞是發生在鋼筋上的,便是鋼筋腐蝕。鋼筋腐蝕有兩大類,即化學腐蝕和電化學腐蝕。其中化學腐蝕是指鋼筋表面與氣體或電解質溶液接觸發生化學作用而引起的腐蝕,這種腐蝕的過程沒有電子流動,只是腐蝕現象的其中--d,部分。電化學腐蝕是指鋼筋表面與介質如濕空氣、電解質溶液等發生電化學作用而引起的腐蝕,此腐蝕過程存在電子的流動。電化學腐蝕必需具備兩個基本條件:存在兩個電勢不等的電極;金屬表面存在必要的電解質液相薄膜。一般說來,由于鋼筋成分不均勻或氧氣濃度的差異,第一個條件總是能夠滿足的,第二個條件則要求混凝土中腐蝕的相對濕度大于60%E91。施要求高,從而使其在實際工程中難以推廣應用。礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥40mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
★灌漿料的施工
1.基礎處理
清掃設備基礎表面,不得表面形貌的測量技術經歷了早期的定性測量一定量測量一高精度定量測量的階段,包括接觸式和非接觸式四種測:量方法。自30年代起,德國的GSehlnatlz根據測得的峰谷高度信息,并提供圖像而研制了世界上的第一臺觸針式輪廊記錄儀,此后隨著計算機技術的發展,觸針式表面儀器在分辨率、測量信噪比等性能上不斷完善和改進,如R.E.Reason研制的Talyserf觸針式表面輪廊使,美國Wilimason推出的三維表面觸針式輪廓使等等,這些成就對表面形親的測量發展異有重要的意義。有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用2002年美國國會的關于損失和預防策略命令的研究報告中指出‘…,高速公路的鋼筋混凝JI橋梁每年經濟損失達379億美元,這些損失僅包括破損橋粱的重建和維修等的直接損失,而困交通延遲和生產力損失造成的間接損失,估計是直接損失的lo倍之多,國外有學者曾用“五倍定律”形象的描述這種損失的嚴重性,即在設計階段對鋼筋防護^而節。烀涝,則意味著:采取措施阻止鋼筋銹蝕需要花費5美元;到混凝上表面順筋開裂時維修要花費25美元:當結構嚴重破壞時維修費用達125美元14J。鋼筋混凝十結構耐久性問題研究是結構j=程設汁巾迫切解決的蘑耍問題,對我國高速發勝的建設事業顯得更為重要。"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
★灌漿料的安全性
采用無毒無揮發配方,對環境和人體友好,但應避免與皮膚長期接觸,使用時應佩帶必要防護并保持環境通風,皮膚沾染應及時清洗,如有誤食口服,。
★灌漿料的適用范圍與參數
CGM-3
超細加固型 超細骨料,適用于灌漿層厚度5mm<δ<30mm的設備基礎及鋼結構柱腳板生成的CaS042H20和鈣礬石(3CaOA12033CAS0432H20)由于體積膨脹,在早期,能夠填充混凝土表面孔隙,延緩侵蝕離子的滲入,提高混凝土早期的耐腐蝕性能,延緩性能劣化速率,但是后期隨著基體pH值下降導致水化產物解體,石膏和鈣礬石膨脹導致混凝土開裂,加劇混凝土的腐蝕。酸性環境下是否存在鈣礬石膨脹破壞存在諸多爭議。二次灌漿;炷亮褐庸探卿撆c混凝土之間縫隙灌漿。
CGM-2
豆石加固型 含5~10mm大骨料,適用于灌漿層厚度δ≥150mm,且灌漿長度L<1000mm設備基礎二次灌漿。建筑物的梁拉伸試驗表明,變形鋼筋隨著銹蝕程度的增加,其名義屈服強度和名義極限強度總體趨勢為線性降低,但隨著銹蝕程度的增加逐漸偏離直線,這主要是由于隨著銹蝕程度的增加,局部銹蝕的不均勻程度愈加顯著的緣故。、板、柱、基礎和地坪的補強加固(修補厚度≥60mm)。
CGM-4
超早強加固型 2小時強度達到15Mpa,適用于鐵路枕軌等快速搶修,水泥混凝土路面、機場跑道等快速修補,止水堵漏快速修補。 隨著齡期的進一步增加,銹蝕板齡期達到9年,這段時期為銹蝕板裂縫發展的第三階段。這一階段,六根縱向受拉鋼筋位置處裂縫繼續增長,達到全長貫通,兩邊區處鋼筋保護層脫落嚴重,鋼筋外露,未脫壓漿以粘著製縫和水泥石製維較多,而集料製絕較少。微觀製鑓在混凝土中的分布是不規則的,沿截面是不貫穿的。因此,有微觀製維的混凝土可以承受拉力,但結構物的某些受拉較大的薄弱環節,徴觀製繼在拉力作用下,很容易串連貫穿全稅面,最終導致較早的斷製。時,每一工作班應制作留取不少于3組尺寸為40mm×40mm×160mm的試件,標準養護28d,進行抗壓強度和抗折強度試驗,作為質量評定的依據。試驗方法應按照現行國家標準《水泥膠砂強度檢驗方法(ISO法)》(GB/T 17671)的規定執行;質量評定方法可參照JTG/T F50-2011《公路橋涵施工技術規范》中第6章的規定執行。落處寬度也達到了3.5mm以上,甚至超過5.0哪。而2、5號位鋼筋處裂縫寬度基本上在1.5~3.O之間,也有幾條裂縫寬度較小,但寬度也基本上在1.O哪左右。;
CGM-1
通用加固型 灌漿厚度30mm<δ<150mm設備基礎二次灌漿,地腳螺栓錨固,栽埋鋼筋,建筑物梁、板、柱、基礎和地坪的補強加固。
★灌漿料的包裝貯運
1.產品包裝以實際發貨為準,此圖片僅為參考。
2.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
3.灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
★灌漿料的特點
(1) 高韌性 可化解由動設備傳遞來的可能使水泥基灌漿層爆裂的動荷載人們往往認為是氯鹽或其它因素造成的鋼筋混凝土的破壞,而忽視了混凝土保護層碳化這個誘因。最近的一些研究結有效預應力精度不夠:有效預應力偏小,預應力度不足,結構過早出現裂縫,下撓超限。有效預應力偏大,可能導致預應力筋安全儲備不足,結構過大變形或裂紋,甚至脆性破壞。果證實了這一點:近期修建的一些鋼筋混凝土結構設施,如北京、天津的一些立交橋,雖然投入使用的時間不長,撒鹽除冰的次數也不如美、英北部地區那樣頻繁,但仍暴露出日益嚴重的鋼筋銹蝕破現象,有的不得不推倒重建或花巨資進行修補。哈爾濱.大慶的公路,建成后投入使用僅5年,鋼筋混凝土就出現了順筋漲裂、層裂或剝落。。(2) 灌漿料的耐腐蝕 可承受酸、堿、鹽、油脂等化學品長期接觸腐蝕。(3) 抗蠕變 -40℃至+80℃凍融交替、振動受壓的惡劣物理工況下長期使用無塑性變形。
(4) 無收縮 確保灌漿層最終成型后與承載面完在孔蝕源擴大的最初階段,由于腐蝕產物(鐵鹽)發生水解生成H+,使得同腐蝕孔接觸的溶液層的pH值下降,形成一個酸性的溶液區,從而加速了鐵的溶解,使腐蝕孔擴大加深。隨著腐蝕孔的加深以及形成的腐蝕產物覆蓋孔口,孔內、外溶液之間的物質遷移更加困難,孔內鐵鹽濃度愈益增高。全接觸。
(5) 灌漿料的高強早強 具有優于水泥基材料的抗壓、粘結等力學性能,更高的早期強度。
★常用的銹蝕試件的模擬方法有三種:一是通過試驗室試驗,包括快速銹蝕試驗(恒電但對已經空鼓、開裂的局部,可以進行傳統方法的處理。一般先要對空鼓、開裂的局部進行剔鑿,鑿去疏松層,用鋼刷刷去鋼筋表面的鐵銹,再用防護砂漿進行修復。如果混凝土結構受力能力需要加強,可附加碳纖維加固、粘鋼加固、加疊合層粘結劑耐久性實驗:(切片試驗,植筋膠在外界暴露環境(酸堿環境)的粘結力不低于常溫對比試驗的粘結力)通過切片實驗驗證植筋膠耐久程度和其對外界暴露環境的敏感程度。(1). 混凝土試件:每種膠比較系統地對混凝土膠凝體系抗裂性能進行了研究。研究認為:水泥的強度、生產廠和水泥堿含量均會對水泥的開裂性能產生影響。相同強度等級的水泥,隨著堿含量的增加,開裂時間有縮短的趨勢。但是不同強度等級的水泥的開裂性能與堿含量之間沒有明顯的對應關系。在堿含量和強度等級的影響中,強度等級對開裂性的影響比較顯著。類至少4個,混凝土等級C25,試件立方體邊長≥150mm,高≥300mm 。(2) 在每個干燥試件的中軸線位置植入直徑12mm 鋼筋,其鉆孔直徑由供應商提供,鉆孔深度280mm。在供應商提供的凝膠受力時間之后,用鉆石鋸將試件切成30mm厚的切片,切片數量至少30個(10個切片做外界暴露環境試驗,10個切片做常溫對比試驗)。3) 帶有植筋的切片置于堿性溶液和硫磺環境中,對比試驗的切片保存在常溫下(干燥+21C?3C,相對濕度50在5%左右)2000小時。等措施。流通電法、加氯鹽銹蝕等)和人工氣候環境加速老化法(如碳化和鹽雰試驗):二是長期安裝在加固結構上的碳纖維板在長期荷載作用下的時效應變非常小:即使對碳纖維板施加了較高的預應力,其時效應變也不足預應變的0.4%,有效的保證了預應力的穩定和加固效果的持久,時效因素對預應力碳纖維加固的影響不大。用CFI心板加固混凝土結構,可以使結構的承載能力和剛度有較大幅度提高的同時還能具有良好的長期性能,避免徐變等時效因素的影響。在加固設計時,可適當的考慮時效的影響,應避免對碳纖維板施加過大的預應力,對于時效造成的預應力損失在一般情況下可以忽略。自然暴露試驗;三是替換構件法,即從在役結構中截取銹蝕構件部分進行試驗研究。由于人工氣候環境對試驗條件的要求和試驗成本較高,而恒電流通電法具有鋼筋銹蝕速度快,易控制鋼筋銹蝕速度的優點,對于研究銹蝕率與銹脹裂縫關系具有比較好的適用性,所以本研究采用恒電流極化法加速鋼筋銹蝕。灌漿料的材以粉煤灰代替部分水泥不僅可以改善混凝土的和易性,增加膠凝物質,降低混凝土的水灰比,使早期水化熱明顯降低,試驗證明,摻入水泥用量15%的粉煤灰可降低水化熱15%左右,水泥水化熱隨粉煤灰摻量的增加而降低,但摻量必須適度,摻量過多則會降低混凝土的早期強度,增加混凝土的收縮,因此,利用粉煤灰代替部分水泥的大面積混凝士具有顯著的經濟效益和社會效益。料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
<實際工程中也有采用斜向粘貼鋼板的方式,使加固鋼板與斜裂縫方向垂直,有關單位也進行過類似的試驗。斜粘鋼板時,鋼板與梁軸線有一夾角,不可能采用整體9形箍板形式。為確定斜粘鋼板時合理的粘貼和錨固方式,保證粘鋼加固效果,分別進行了不同形式和連接方式的錨固試驗,以確定一種既可靠又易于施工的錨固方案。試驗梁截面,跨度,受拉鋼筋,受壓鋼筋,箍筋,混凝土強度等級。試驗采用兩點集中荷載,剪跨比!S;)"。試驗分卸荷加固和不卸荷加固兩種情況。加固鋼板寬度,厚度。div>2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.由于孔道漿體的強度高于孔外的混凝土,導致破壞時的滑移面發生在混凝土與塑料波紋管結合面間而非波紋管與漿體結合面之間。8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符SaadatmaneshandEhsani對外貼GFRP加固混凝土梁進行了試驗研究,并與對GFRP施加預應力后加固混凝土梁的性能做了比較。吳智深等人對CFRP施加預應力后再加固混凝土梁進行了試驗研究.研究表明,該加固方法對梁的開裂荷載、屈服荷載及極限荷載等均有提高作用,他們還提出了張拉控制應力的建議值,并初步開發出能用于實際工程的張拉設備。合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。
2.4.1大體積混凝土”最出現在水利水電工程中。在水利水電工程同是I級荷載下的車載試驗,加固后的主梁跨中撓度不但沒有變小,反而增大了,倒是在II級荷載下跨中撓度相對的變化值不是很大。這是因為,這些測量結果分別是以加固前后橋上無車載時的撓度為參照的,加固后的車載試驗撓度測量值中并未計入張拉時的反拱,所以未能直觀地體現出加固后橋梁的剛度優勢。如果取與加固前車載試驗測量時相同的參照撓度,即將反拱值加入到加固后的撓度變化值中。建設應用中許多科研工作者對“大體積混凝土”已作了大量細致的研究,發展至今從理論到施工方法,施工方案及優化控制等方面已比較成熱,并相應制訂了一系列規定,例如:早在1933年~1936年美國建成的大苫果重力壩,混凝土澆筑量達25o萬立方米,并且未出現裂繾。我同的三峽大壩,在各方面都取得了很大的成功。但是,建筑大體積混凝土由于工程規模的大小、結構形式、混凝土特點、配前構造及受荷情況都與水利水電類建筑物差異很大。建筑工程大體積混凝土相比一土水工大體積混凝土一般塊體較薄,體積較小;混凝士設計強度高,單方混凝土水泥用量較大;連續性整體澆筑要求較高;結構構筑物多屬于地下、半地下或室內,受外界條件變化影響較小。此外,在混凝土溫度及溫度應力的計算方法和釆取的描施上,兩者也有很多差異。.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
2.4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
2.4.3.2 將拌和好的GM型灌漿料一次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板Manning提嫩了環氧涂層鋼筋在混凝土中腐蝕過程的孕育一發展的模型,這一模型在孕育階段包含兩種機理,。表明了裸鋼筋腐蝕的一般模型。如果環氯涂層鋼筋埋在劣質混凝土中,氯離子會迅速遷移到混凝土中,但是鋼筋(裸露的表磷除外)直到環氧涂層失去附著力才發生腐蝕。當涂層下鋼筋發生腐蝕時,混凝土中環氧涂層鋼筋的腐蝕就相應地處于孕育一發展的模型中的發展階段。相反地,如果環氧涂層鋼筋埋在高質的混凝土中,在氯離子到達鋼筋表面之前,環氧涂層與鋼筋之間的粘附力就逐漸喪失。在高質量的混凝土中,環氧涂層鋼筋腐蝕的孕育階段對應于氯離子的遷移過程。的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2在理論分析方面,70年代中期,鐵道部第四勘測設計院對鋼筋混凝土圓形空心橋墩的日照溫度應力進行了分析。此后,鐵道部科學研究院西南研究所、上海鐵道學院等單位在壁板式柔性墩的模型與現場觀測的基礎上,分別提出了研究報告。鐵道部第四勘測設計院在長沙水塔的現場觀測基礎上提出了圓形空心高墩的溫度應力報告。致使混凝土橋墩方面的溫度應力試驗研究有了明顯的進展。1978年南京橋梁會議之后,隨著大跨度混凝土箱形橋梁的興建,如紅水河鐵路斜拉橋、九江長江大橋引橋40m簡支箱梁等,溫度應力的試驗研究工作由橋墩結構轉向橋垮結構。于1978年起,鐵道部科學研究院西南研究所建立了混凝土橋梁溫度應力研究組,開始了系統的實驗研究工作。首先結合紅水河鐵路斜拉橋進行預應力混凝土箱梁的溫度分布與溫差應力的現場觀測與試驗工作。試驗研究對象有箱梁、塔柱、斜纜等結構部分。觀測項目計有日輻射、風速、氣溫等氣象資料,歷時三年有余。.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。對長期荷載作用下的FRP約束混凝土軸心受壓短柱進行了試驗研究,提出基于ACI(1992)徐變模型的計算方法,分析了Fl心約束混凝土軸壓構件的徐變變形特點,并且對軸壓比、長細比、含FRP率、FI沖強度等進行了參數分析。另外,試驗表明長期荷載作用與否對FRP約束混凝土軸壓構件的承載力影響很小。曾憲桃、車惠民對粘貼玻璃纖維板加固鋼筋混凝土梁的徐變特性進行了理論分析,采用老化理論和齡期調整有效模量法推出了分析加固梁徐變的計算公式。分析表明,補強加固梁中混凝土收縮、徐變及復合材料徐變對加固梁都會產生較大影響。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n由于混凝土的熱膨脹率比碳纖維板的高,當氣溫下降時,碳纖維板的溫度應力減小引起預應力損失;當氣溫上升時,預應力又得到恢復。關于復合材料加固混凝土梁抗彎、抗剪性能的研究,Norris[2l]認為選擇合適的粘結劑對提高被加固構件的機械性能尤為重要,碳纖維強度降低系數做了相關研究.ThanasisC.Triantafi11ou[24]提出FRP有效應變的概念,得到了FRP對剪力的貢獻的計算公式,AmirM.Malek「25-26]對受剪加固梁中FRP承擔的剪力的計算進行了理論分析,并提出了受剪承載力的簡化計算公式。溫度引起的碳纖維板應力較大,在評估加固橋梁的長期性能和使用壽命時必須予以考慮。另外,在加固施工時,可根據計算結果和實際需要,適當地增大或減小張拉控制應力,以減小溫度效應引起的預應力損失。由于碳纖維板的抗拉強度很高,即使在施加預應力后,仍有很大的強度儲備,所以為了提高橋梁剛度和減小預應力損失,在橋梁混凝土質量允許的條件下,宜選擇在溫度較低時進行加固施工,防止熱膨脹引起的預應力損失,保證設計的預應力度和加固效果。天的高度讀數(mm);Ho:試件的初始讀數(mm);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值.
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼管,將其水泥漿經檢測并判定合格后,開啟真空機,抽取管道內的空氣。確認管道內真空度達到預期要求后,方可開啟壓漿機進行壓漿作業。底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西樂山無收縮灌漿料廠家|江西灌漿料工廠。