<加固柱的極限荷載與位移較未加固柱有較大幅度提高,其中素混凝土的極限荷載與預計破壞荷載基本吻合,采用第l方案試件的極限荷載比預計破壞荷載有一定幅度的提高,混凝土是脆性材料,抗拉強度只有抗壓強度的十分之一左右;拉伸變形也很小,短期極限拉伸變形只有(0.6~1.0)×104相當于溫度降低6~10℃的變形;長期加載時的極限拉伸變形也只有(1.2~2.0)×104。大體積混凝土結構斷面尺寸比較大,混凝土澆筑后,由于水泥水化熱,內部溫度急劇上升,此時彈性模量很小,徐變很大,升溫引起的應力不大。但在日后溫度逐漸降低時,彈性模量較大,徐變較小,在一定約束條件下會產生與傳統的加固方法如加大截面法、外包鋼法、體外預應力法和隔震消震法比較,碳纖維加固技術具有明顯的技術優勢,主要體現在:對原結構的影響。禾祭w維片材質量輕且厚度薄。用碳纖維片材加固修復構件后,基本上不增加原有結構的自重和尺寸,也不會減小建筑物的使用空間,有著很大的經濟效益。另外,加固施工過程中,構件仍然可以繼續適用,不會帶來因結構停止適用而造成的經濟損失。而且,碳纖維片材加固技術基本上無需對原有混凝土結構打孔穿洞,不會對原結構造成加施工損傷。適用面廣:由于碳纖維片材是一種柔性的材料,而且可以任意地裁剪,所以這種加固技術可廣泛地應用于各種結構類型、各種結構形狀和結構中的各種部位,且不改變結構的形狀及不影響結構外觀。同時對其它加固方法無法實施的結構構件,諸如大型橋梁和橋板,以及隧道、大型簡體及殼體結構工程等,碳纖維加固技術都能順利解決。相當大的拉應力。大體積混凝土通常是暴露在外面的,表面與空氣或水接觸,一年四季中氣溫和水溫的變化在大體積混凝土結構中會引起相當大的拉應力。其抗壓承載力平均提高l3.5%(素混凝土柱提高l0.3%).采用試件的極限荷載比預計荷載有較大幅度提高,其抗壓承載力平均提高56.9%(素混凝土柱提高30.9%).由此可知,這兩種方案雖粘貼方法不同所(用的加固量是相同),但在抗壓承載力提高幅度值上有較大的區別。SPAN style="FONT-FAMILY: 宋體; LETTER-SPACING: 0pt; COLOR: #ff0000; FONT-SIZE: 16pt; background-size: initial; background-origin: initial; background-clip: initial">★
灌漿料的產品特點1. 地鐵、隧道、地下等工程逆打法施工縫的嵌固。
2. 可冬季施工:允許在-10℃氣溫下進行室外施工。
3. 灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
4. 以及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
5. 灌漿料的耐久性強:本品屬無機膠結材料,使用壽命大于基礎混凝土的使用壽命。經上百萬次疲勞試驗,50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
2產品用途編輯1. 適用于機器底座、地腳螺栓等設備基礎灌漿。
2. 建筑物的梁、板、柱、基礎、地坪和道路的補強、搶修、加固。
3. 灌漿料可進行地腳螺栓和鋼筋的錨固及結構補強。
4. 微膨脹性:保證設備與基礎之間緊密接觸,二次灌漿后無收縮。粘結強度高,與圓鋼握裹基礎底板上網的后澆帶開敞時間較長,將不可避免地落進各種垃圾物,不清理干凈,會影響工程質量,可是由于底板鋼筋粗且密,再加上局部加強筋,使得清理工作非常龍難。后澆帶貫穿整個地上、地下結構,所到之處遇梁斷梁、遇板斷板,給施筑工帶來很多不便,影響施工進度。后澆帶兩側壁混凝土鑿毛施工非常困難,如處理不好反而會人為造成貫穿裂縫。如果地下水位高,而對于大體積混凝土內外溫差,陜西省質檢站召開專家會議及通過試驗認為,大體積混凝土內外溫差不宜超過25C。混凝土內部溫度一般不宜超過70℃,否則會影響混凝土強度。目前關于大體積混凝土溫度控制的研究還不是很多,并且在建設實踐中概念比較混亂。但是廣大科技工作者也正在對這個問題作積極努力的探索,從材料、機理、施工、監測、邊界條件等各個方面進行研究,爭取早日制定出一套適用交通工程的大體積混凝土溫控防裂施工技術。后澆帶填充前地下室處于漏水狀態,嚴重影響施工。基于以上各方面原因,后澆帶在設計及施工過程中都應該慎重考慮,對于具體工程應采取必要而有效的措施以確保工程質量。力不低于6Mpa。
5. 早強、高強:1-3天抗壓強度可達30-50Mpa以上。
正是因為灌漿料的強度高,遠遠超過水泥能達到的強度,并且改變了水泥在固化時收縮的特點,所以稱為高強無收縮灌漿料!!
1、施工步驟: 清理灌漿空間并提前將混凝土表面潤濕,模板及養護物品、灌漿設備我國屬于發展中國家,在短時間內重建國、省道上的大量危舊橋梁,需要大量投資,必然影響到重點工程建設,這有悖于橋梁建設的可持續發展。一般而言,加固原有橋梁的費用比新建橋梁低得多(一般約為新建橋梁費用的10'-~20%,雙曲拱橋加固改造費用約為新建橋梁的20"-'40%),工期短得多,而且可以在不預應力鋼筋包括高強鋼絲、鋼絞線和精軋螺紋鋼筋等,它們的共同特點是強度高,塑性變形能力差,受應力集中影響大,容易發生脆性破壞。關于預應力鋼筋蝕后的力學性能的研究不多,目前尚未見有可供參考的資料。本次試驗的結果表明銹蝕鋼絞線的名義應力-應變曲線呈直線關系,且沒有塑性變形階段,名義應力達到最大值后即發生破壞。因此銹蝕鋼絞線可采用單直線的應力-應變本構模型,其中名義彈性模量可參考式進行計算,名義極限強度可參考式進行計算。中斷橋上運輸或橋下通航的條件下施工。通過對現有橋梁進行加固改造和利用,提高其通行能力和服務水平,不僅可以為國家帶來巨大的經濟效益和社會效益,而且對于我國橋梁建設步入“建養并重”的可持續發展道路也有著重大而深遠的意義。、準備攪配制高性能混凝土應具有以下特點:較好的密實鋼筋混凝土框架節點滯回曲線的共同特點是從最初加載時耗能能力較好的梭形很快過渡到耗能能力最差的倒S形,并且捏攏現象嚴重,這種情況與節點區的鋼筋粘結滑移、混凝土的剪切變形以及混凝土的裂面效應分不開。加固后試件滯回曲線的捏攏現象和零滑移現象都比沒有加固的試件有改善,滯回環更加飽滿,滯回曲線的形狀也有改善。性,以抵抗壓力水的滲入和有害物質的入侵;較好的抗裂性,以防止混凝土產生有害裂縫;具有較高的抗氯離子擴散、抗腐蝕性能;具有鋼筋防護層或改變材質,如環氧涂層鋼筋、鍍鋅鋼筋、耐蝕鋼鋼筋、不銹鋼鋼筋等。環氧涂層鋼筋具有耐堿性、耐化學侵蝕性、良好的彈性和摩擦性。因這種鋼筋保護機理是建立在隔離鋼筋與腐蝕介質的基礎上,保證膜層的完整性成為環氧涂層鋼筋有效性的關鍵。良好的工作性和(易性),以保持混凝土的勻質性,使其更為密實,并提高施工效率和質量。按以上要求,同時根據規范中對防腐高性能混凝土要求,提出使用高效減水劑、降低混凝土單位用水量、摻入適量的礦物摻合料、使用特種外加劑f阻銹劑、憎水劑、密實劑)等混凝土內部溫度的不均勻性和混凝土材料本身的非均勻性及抗裂能力對于主梁承載力不足,或縱向主筋出現嚴重銹蝕,或梁板橋的主梁出現嚴重橫向裂縫時,可采用環氧樹脂或建筑結構膠將鋼板這一抗拉強度高的材料粘素混凝土的腐蝕電流密度相對于大部分正交試驗的混凝土要大。整體來看大部分摻入復配阻銹劑的成分的正交試塊,抑制腐蝕的能力大于素混凝土試塊。綜合以上四個因素,阻銹劑效果最佳組合的是鋁酸鈉含量為0.39/L,二乙烯三胺含量為30mL/L,丙烯基硫脲含量為1.69/L,1,4一丁炔二醇含量為29/L。說明這種配比關系下的阻銹劑能較好地減緩鋼筋混凝土中鋼筋腐蝕的速度。貼在混凝土結構的受拉緣或者薄弱部位,使其與原構造物形成共同整體受力,從而提高原結構鋼筋和混凝土的應力狀態,達到提高構件的抗彎、抗剪能力,減少裂縫繼續發展的效果。是混凝土出現溫度裂縫的兩個原因;炷羶炔康臏囟仁撬療岬慕^熱溫度、澆注溫度和結構物的散熱溫降等各種溫度的疊加,而溫度應力則是由溫差所引起的溫度變形造成的:溫差愈大,溫度應力也愈大。混凝土的線膨脹系數a一般為lOxlO'6/℃,混凝土的極限拉伸值EP一般在50。lOOxlO擊之間,此時容許混凝土的內外溫差值應為5.IO'C。當實際溫差超過理論給出的“允纖維增強聚合物(FRP)是一種復合纖維材料,是由合成或有機高強纖維構成,是混凝土結構中一種新型復合材料。FRP主要由高性能纖維、聚西當基、乙烯基或環氧基樹脂組成,典型的FRP大約有60-65%的纖維,其余是基體。単絲經浸潤樹脂、拉技、纏繞、粘結而形成片材、板材、繩索、棒材、短纖維或格狀材。許溫差”時,混凝土就可能開裂,這就是大面積混凝土表面需要及時覆蓋保濕保溫養護的原因。工程實踐中,多數工程的溫差一般在20—25"C之間尚未開裂,主要因為結構物不可能受到絕對約束,混凝士也不可能不產生徐變和塑性變形,所以我國提出的大面積混凝土的允許溫差控制標準為:一般不超過25℃。手段提高混凝土結構的耐久性。拌鋼筋銹蝕造成了巨大的經濟損失。鋼筋混凝土結構早期失效的主要原因是混凝土中鋼筋的銹蝕。1991年,召開的第二屆混凝土Dagher等分別描述了混凝土梁和板中鋼筋銹蝕破壞形態。對于梁,隨著鋼筋銹蝕產物的膨脹,微裂縫擴展到離鋼筋最近的表面,隨鋼筋質量控制要點:1、在現場施工應做錨栓現場應用條件確定試驗,以充分檢驗承載能力。試驗不僅在低強度混凝土中進行,也要在高強度混凝土中進行。在測試中,其允許荷載、相應間距、邊距構件厚度按生產廠的說明埋置錨栓。試驗采用軸心拉力、剪力及拉剪組合力,從而確定荷載方向對承載力的影響。2、清孔時必須將孔內塵土及浮灰清理干凈。3、螺桿必須用電鉆旋入,不許直接敲入。銹蝕進一步發展,疏松的混凝土剝落。對于板,當鋼筋間距較小時,裂縫在鋼筋之間形成,混凝土層狀剝落;當鋼筋間距較大且項部保護層較小時,裂縫在板頂形成。袁迎曙從現場采樣、試驗室加速模擬腐蝕及模擬制作三個途徑獲取試件進行試驗,根據試驗結果與分析結果的統計分析,指出混凝土順筋脹裂破壞形態是鋼筋混凝土結構銹裂損傷評估的重要內容之一。在對結構銹裂損傷外觀評估時,必須研究混凝土順筋脹裂破壞形態。耐久性國際學術會議上,Mehta教授在報告中指出:“當今世界混凝土破壞的原因,按重要性遞降排序依次為:鋼筋腐蝕、寒冷氣候下的凍害、侵蝕環境的物理通過對1個植筋深度為10d的鋼筋混凝土錨固構件和5個由錨栓加固后的植筋構件在低周反復荷載下的試驗研究分析,較系統地比較了其破壞形態、承載力、滯回特性及延性等抗震性能。研究結果表明:①試驗中所用錨栓在承受反復拉拔力時錨固效果良好,有效阻止植筋深度較淺的構件發生脆性破壞改善了植筋深度為15d構件的延性,并且提高了構件的屈服強度和峰值荷載,尤其在試驗后期,錨栓在限制構件承載力下降和位移增大方面起了重要作用;②單錨構件的承載力和延性均優于雙錨構件,在有限的范圍內錨固多根錨栓,容易造成原有混凝土結構截面的削弱,導致構件加固效果反而降低。化學作用!贝罅渴聦嵄砻鳎瑹o論在國外還是國內,鋼筋銹蝕都是嚴重威脅鋼筋混凝土結構耐久性的最主要、最普遍的病害,它所造成的直接、間接損失之大,遠遠超出人們的預料。機具。
2、使用溫度為-10℃至40℃。嚴禁在灌漿料中摻入任何外加劑或外摻料。
3、按灌漿料重量的12-15%加水量加水攪拌(機械攪拌2-3分鐘,人工攪拌5分鐘以上)
4、支設模板并用水泥(砂)漿、塑料膠帶封堵模板連接處以確保不漏水、漏漿。
5、施工完畢后溫度裂縫是造成小砌塊砌體早期裂縫的主要原因,目前我國建筑物的結構梁板的主要材料是混凝土,這兩度的變化會引起材料的脹縮變形,這種變形即為溫度變形,當構時,溫度變形將在構件內產生應力,當溫度變形引起的溫度應力構件的抗拉應力時,構件就會產生溫度裂縫。導致出現這種裂網是:如果屋面保溫性能不佳,那么頂板的溫度比設備的布置:在孔道壓漿一端附近并排擺放兩臺套壓漿機,要求能使操作人員能夠面對著孔道;在孔道另一端的錨座附近放置二臺套真空機。其下的墻體高得多的線脹系數為1.OX10"5/opl.5×10。5/0c,而空心小砌塊砌體線脹龍c,兩者相比砼的線脹系數大很多,故頂板和墻體問的變形差,在很大的拉力和剪力,剪應力在墻體內的分布為兩端附近較大,筑頂層大,下部小。因此在砼平屋蓋房屋頂層兩端的墻體上,在與梁在與混凝土柱交接處,容易出現裂縫。總之,在混凝土與小砌塊的交接處因為兩者的膨脹系數不同而熱脹冷縮程度不同都容易產生溫度應力,當這種應力大于容許應力而產生的裂縫。應立即覆蓋塑料薄膜并加蓋草簾或棉被陰濕養護3-7天。
6、將攪拌均勻的灌漿料從一個方向灌入灌漿部位。必要時可借助竹條或鋼釬導流,可適當振搗或輕輕敲打模板。
6施工養護<在鹽水浸泡的條件下,摻量60%粉煤扶的空白組試件中鋼筋已經全面銹蝕,而摻有阻銹劑sika901、MCI—A的試件中鋼筋并沒有發生明顯銹蝕,阻銹劑對試件中鋼筋起到了較好的保護作用。作用機理主要是,在氯離了的侵蝕作用下,遷移型阻銹劑分f可以同時在鋼筋表面的陽極區、陰極區發q三吸附,從而對鋼筋起到保護功能。摻有阻1961年,Kaplan[l24l首先將斷製力學引入混凝土中,其主要研究帶裂縫的混凝土體的強度和裂縫的傳播規律,從力學層面研究宏觀的斷裂現象,包括宏觀製縫的形成、擴展、失穩開裂、傳播以及止裂等。對于混凝土,由于宏觀製紋尖端出現的大量徴製紋組成的微製區引起,Kaplan在1961年時以染色法觀察了其亞界擴展。并采用有效裂紋長度來對裂紋長度進行修正。銹劑的鋼筋表面略有少量黑色物質,浚黑色物質是阻銹荊分子在鋼筋表面小斷_歿附緇成的吸附物。/SPAN>
常溫養護
1.2灌漿前,日平均溫度不應低于5℃,灌漿完畢后裸露部分應及時噴灑養護劑或覆蓋塑料薄膜,加蓋濕草袋保持濕潤。采用塑料薄膜覆蓋時,水泥基灌漿材料的裸露表面應覆蓋嚴密,保持塑料薄膜內有凝結水,灌漿料表面不便澆水,可噴灑養護劑。
3.應保持灌漿材料處于濕潤狀態,養護時間不得少于7d。
當采用快凝快硬型水泥基灌漿材料時,養護措施應根據產品要求的方法執行。
高溫養護
1.漿體入模溫度不應大于30℃。
2.灌漿料的灌漿前24h采取措施,防止灌漿部位受到陽光直射或其他熱輻射。
3.采取適當降溫措施,與水泥基灌漿材料接觸混凝土基礎和設備底板的溫度不大于35℃。
★灌漿料的參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
★灌漿料包裝貯運
1.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2.<碳纖維增強復合材料(CFRP)用于結構加固始于八十年代日本、美國等發達國家,特別是在日本阪神大地震后,應用逐漸廣泛。1982年,UMeJer首先在瑞士聯邦材料實驗室(EMPA)進行了CFRP加固混凝土結構的試驗研究。1991年,美國混凝土協會(ACI)成立了專業委員會(ACl440),并于1993年在加拿大溫哥華組織召開了第一屆CFRP增強鋼筋混凝土結構的國際會議(FR—FRCS—1),此后該會議每兩年舉辦一次。日本在CFRP方面的研究、開發和應用一直占領先地位,特別是對抗震加固的性能與效果進行了研究,并編制了各種設計手冊、施工指南和規范等。日本建筑院于1993年制定并頒布了(FRP加固混凝土結構設計指南》。1996年日本土木工程學會正式頒布了《連續纖維材料補強加固混凝土結構的設計及施工指南》。這鋼筋混凝土銹蝕破壞過程大致可分為四個階段:免疫階段:自混凝土成型起,至碳化層前沿接近鋼筋表面,或者氯離子達到鋼筋表面,使鈍化膜遭到破壞時為止。在這個階段,鋼筋在混凝土中具有免疫功能,鋼筋表面有保護膜。這段時間以fo表示。發展階段:在免疫期之后,鋼筋表面一旦具有發生電化學反應的三個條件,鋼筋就開始銹蝕直至銹蝕嚴重,到鋼筋因銹蝕發生腫脹而顯示破壞現象(如順筋漲裂、層裂或剝落)。這段時間以^表示。加速破壞階段:從混凝土表面因鋼筋銹蝕腫脹開始破壞發展到混凝土普遍顯示嚴重脹裂、剝落破壞,即已達到不可容忍程度,必須全面大修時止。這段時間以r:表示。結構不安全階段:鋼筋已嚴重銹蝕,混凝土層嚴重破壞,導致混凝土結構失效,不能安全使用。些規程、指南的推出,極大地推動了日本FRP技術的推廣應用步伐。1995年神戶大地震后,日本的碳纖維布的用量已經達到數百萬平方米。/SPAN>灌漿混凝土結構中的鋼筋銹從我國大面積混凝網土施工來看,為降低水泥的水化熱,一般泵送大面積混凝土施工采用粉煤灰硅酸鹽水泥,也可采用礦渣硅酸鹽水泥,但所占的比例較小。每立方混凝土中的龍水泥用量與國外比較有些偏大,大多數均在340kg/m3以上,這可能有兩個原因,一是礦渣水泥保水性差,為有利于泵送加大了水泥用量;二是為了增加混凝土筑的可泵性和水泥漿體的含量加大了水泥用量。加大水泥用量可使混凝土拌合物有良好的可泵性,但水泥用量過多很不經濟,而且對結構未必有利,在大面積混凝土施工中,水泥用量增多,引起水泥水化熱加大,增加了混凝土開裂的危險性。在一般結構混凝土中水泥用量增大會導致混凝土干縮的增大和裂縫的增加。蝕可分為電化學銹蝕和雜散電流銹蝕。國內外學者對鋼筋混凝土的銹蝕機理做了大量研究,普遍認為:混凝土中鋼筋的銹蝕機理主要為電化學過程。新鮮的混凝土呈堿性,鋼筋表面被氧化,形成致密的保護膜——鈍化膜,使鋼筋處于鈍化狀態,即使在有水分和氧氣等利于銹蝕產生的條件下鋼筋也不會發生銹蝕。料的保質期為6個月,超出保質期應復檢合格后方可使用 。
3.產品包裝以實際發貨為準。
★灌漿料灌漿后應及時采取保濕養護措施。
冬期養護
1、拆模后水泥基灌漿材料表面溫度與環境溫度之差大于20℃,應采用保溫材料覆蓋保護。
2.如環境溫度低于水泥基灌漿材料要求的最低施工溫度或需要加快強度增長時,可采用人工加熱養護方式;養護措施應符合國家現行標準《建筑工程冬期施工規程》JGJ104的有關規定。<碳化收縮是指含有一定水分的硬化混凝土與空氣中的二氧化碳反應,對混凝土表面漿體引起的輕微收縮。碳化收縮具有不可逆性。研究表明,碳化收縮在相對濕度為50%時最大,在相對濕度為100%和25%時,碳化緩慢,幾乎沒有碳化收縮。碳化收縮發生在混凝土表面處,一般表面處的干燥收縮也大,二者疊加,是混凝土早期表面開裂的主要原因之一。碳化也可能發生在新澆筑還沒有硬化的混凝土中,可能導致混凝土表面細微開裂或表面酥軟泛白,也稱起砂。/o:p>
3.冬期施工,工程對強度增長無特殊要求時,灌漿完畢后裸露部分應及時覆蓋塑料薄膜并加蓋保溫材料。起始養護溫度不應低于5℃。在負溫條件養護時不得澆水。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。贛州支座灌漿料廠家|江西灌漿料公司。