★灌漿料的用途
(1)、混凝土結構加固和修補:
1.使用高強無收縮灌漿料進行混凝土梁,板,栓等構件的截面加大加固處理。
2.使用CGM高強無收縮灌漿料進行混凝土孔洞修補。
3.后張預應力混凝土結構管道灌漿及封錨。
4、使用CGM高強無收縮灌漿料進行混凝土路面的修補。
(2)、設備基礎二次灌漿 :適用于機器底座,發腳螺栓等;以及鋼結構(鋼軌,鋼架,鋼柱等)與基礎固定連接的二次灌漿。
(3)、地腳螺栓錨固及鋼筋栽埋 :
地鐵,隧道,地下等工程逆打法施工縫的嵌固。 及時和充分養護。養護是防止混凝土產生裂縫的重要措施,應充分重視,制定養護方案,派專人進行養護工作。墻體混凝土澆筑完畢,混凝土達到一定強度(1~3天)后,必要時可松動兩側模板,離.縫3~5mm,在墻體項部慢水噴淋養護;或帶模養護,采用木模板,對兩側模板澆水養護。拆除模板后,可考慮在墻兩側覆掛麻袋或草簾等覆蓋物,避免陽光直射墻面,連續噴水養護時間應足夠長。提早松動模板淋水養護時,應注意澆水時機,不宜在墻體溫度達到峰值時澆水,以免溫度較高的混凝土被冷水噴淋引起混凝土開裂。加強施工監測?蛇M行混凝土溫度、收縮變形等數據的監測,及時反饋,指導施工。
2.建筑物的橋梁,板柱基礎,地坪和道路的補強。
3. 可進行地腳螺栓和螺栓和鋼筋的錮固及結構補強。
BR高強無收縮對高強混凝土,在配制時由于加入了高效減水劑和摻合料,使水灰比減小,即游離水分相對減少同時增加了密實度。與普通混凝土相比,其水泥凝膠部分所占比例減小,因而徐變變形較小。由混凝土徐變引起的結構徐變變形或結構次內力計算,因客觀因素的復雜性,靠手工精確分析是十分困難的。灌漿料性能特點,初始流動度大于300mm,30min后保留值為260mm,一天2007年,申祿坤對隧道襯砌結構所處的環境特點研究,找出耐久性的主要因素,提出提高耐久性的對策;招郭忠,譚忠盛等,提出了隧道襯砌結構耐久性研究方法,及在材料方面提高隧道耐久性的措施:曹磊,谷柏森,從施工技術方面提出了提高隧道襯砌結構耐久性的施工措施。2008年,孫鈞主要討論的內容有:鋼筋混凝土管片結構的腐蝕機理:影響隧道混凝土結構耐久性的主要因素;管片接頭螺栓和防水材料的耐久性;鋼筋混凝土管片結構耐久性設計方法;隧道結構服務壽命預測,以及提高隧道管片襯砌耐久性的工程措施——綜合防治。該研究成果已在崇明長江隧道工程中得到了初步應用。強度大于20Mpa,進行了系列預拌混凝土立方體抗壓強度、劈裂抗拉強度、彈性模量等基礎試驗,探究了現代預拌混凝土施工期間間接裂縫發生的主要規律。通過工程實踐調查及試驗有以下發現:與傳統混凝土相比,現代預拌混凝C土收縮總量變大;收縮早期發展快;彈性模量早期發展迅速,強度發展相對較慢,.這三方面特性是導致目前預拌混凝土施工期間較多發生早期裂縫材料方面的主要原因,論文并據此提出混凝土施工期間間接裂縫的綜合防治措施。進行了系列預拌混凝土塑性抗裂性能試驗平(板試驗)并改進提出了混凝土塑性抗裂性能試驗平(板法)的改進評價體系。三天強度大于40Mpa,28天強度大于6溫差裂縫:由于溫度變化,混凝土熱脹冷縮而形成的裂縫,此類裂縫一般集中在東西單元的房間、屋面層和上部樓層的樓板。結構裂縫:雖然現澆樓板承載力均能滿足設計要求,但由于預制多孔板改為現澆板后,墻體剛度相對增大,樓板剛度相對減弱。因此在一些薄弱部位和截面突變處。往往容易產隨有混凝土剪拉破壞的界面剝離形態,從圖中可見,底膠強化了混凝土表面,相當于往混凝土深度方向拓展了)的粘結基底,從而更好地發揮了高強混凝土的材料性能,增加了)一高強混凝土共同工作的潛能。高強混凝土界面具有良好的韌性和抗沖擊。粘結性能試驗中,涂有底膠的試件的破壞界面粗骨料清晰可見、凹凸不平、裂縫擴展明顯,且隨粘結長度的不同,伴隨有大小深淺不同的混凝土塊的拉剪破壞。可見破壞界面相對比較光滑,且混凝土的剪拉破壞僅發生在粘結長度較短的情況,剝下的混凝土塊大小和深度一般都不會很當梁體鋼筋與預應力管道相碰時,可適當移動梁體的構造鋼筋或進行適當彎折。對預應力筋豎彎及平彎處的箍筋應特別注意綁扎牢固。在綁扎梁體鋼筋時應同時綁扎橋面及橫隔板的預留鋼筋,在鋼筋較密處,應注意混凝土的灌注通路,必要時將相鄰鋼筋成束綁扎。梁體鋼筋最小凈保護層為20mm,綁扎鐵絲尾段不得伸入保護層內。當采用墊塊控制凈保護層厚度時,墊塊應采用與梁體同等壽命的材料,以保證耐久性,墊塊間距50cm呈梅花型布置。鋼筋直徑在16mm以上的鋼筋采用電焊連接,其焊接長度:單面為10d,雙面焊為5d(d為鋼筋直徑),配置在同一截面的接頭嚴格按施工規范執行。大,界面裂縫擴展不太明顯。生一些結構性裂縫。例如:墻角應力集中處的45°斜裂縫,板端負彎矩較大處的板面裂縫等。構對于冠梁及擋土板混凝土開裂,鋼筋起限制和約束的作用。鋼筋對混凝土的限制約束,主要通過它們之間膠結力和摩擦力的作用。間距均勻的鋼筋所提供的約束作用是最佳的,且能有效防止裂縫寬度在個別處增大。但從日常的施工檢查情況看,由于鋼筋綁扎得不牢固,造成混凝土振搗后,鋼筋分布的偏位現象比較普遍,從而削弱了鋼筋的約束作用。造裂縫:近年來,隨著我國交通事業基礎建設規模不斷增大,預應力梁的使用也變得越來越普遍。在后張法梁的施工過程中,預應力管道壓漿是橋梁施工質量控制的關鍵要素之一。調查及實踐表明,以往施工的一些橋梁由于施工、管理、監督不到位,預應力管道漏壓或根本不壓漿,導致橋梁早期損壞或達不到設計壽命,此類情況甚至在一些國家重點特大橋工程中也屢見不鮮。PVC管處混凝土厚度減薄,容易出現裂縫。收縮裂縫:混凝土在塑性收縮、硬化收縮、碳化收縮、失水收縮過程中易形成各種收縮裂縫。0Mpa.
★灌漿料的<由于碳化使混凝土的孔隙率降低,密實度提高,因而使混凝土的力學為明確不同波紋管成孔的影響、確定波紋管的合理選用原則,使得對預應力孔道注漿體與波紋管間粘結性能進行試驗研究具有重要價值。性能和構件的受力性能發生一定的變化。碳化使混凝土的抗壓強度明顯提高,劈裂強度略有提高,彈性模量有所提高,受壓應力.應變曲線上升段和下降段變陡,混凝土的脆性變大,峰值應力提高,峰值應變變化不明顯。碳化還能使混凝土與光面鋼筋及變形鋼筋的粘結強度有所提高。/B>八大特點
1、微膨脹性:保證設備與基礎之間緊密接觸, 二次灌漿后無收縮。
2、灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
3、抗離析性能:高強無收縮灌漿料克服了現場使用中因加水量偏多所導致的離析現象。
4、綠色環保:不無粘結預應力體系。無粘結預應力鋼筋是指經涂抹防腐油脂,用聚乙烯套管包裹制成的預應力鋼筋。使用時它按設計要求鋪放在模板內,然后澆筑混凝土,待混凝土達到設計要求強度后,再張拉錨固。無粘結預應力鋼筋與混凝土不直接接觸,兩者產生相對滑移而成為無粘結體系。其主要優點是工藝簡單,張拉設備輕,施工方便,有利于分散布筋與高空作業。含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不 爆,可按一般貨物運輸!
5、灌漿料的早強、高強:1-3天抗壓強度30-50Mpa以上。
6、可冬季施工:允許在-10℃氣溫下進行室外施工。
7、灌漿料的抗開裂能力:現場使用中因加水量不確定、環境溫度不確定以及養護條件植筋鋼筋與植筋粘結劑接觸面的摩擦應力近似呈正態分布?隨著荷載的增大,摩擦應力的峰值逐漸由靠近孔口向植筋長度方向轉移;植筋建筑結構膠配制好后,用抹刀同時涂抹在已處理好的混凝土表面和鋼板貼合面,為使膠能充對被粘混凝土表面與植筋部位畫線定位被粘混凝土表面和鋼板表面處理對需植筋混凝土與鋼板部位鉆孔,并對孔壁與植入鋼筋表面處理需卸載加固的構件進行卸載結構膠配制涂膠粘貼固定加壓植筋固化卸去固定與加壓裝置自檢修補表面防護分浸潤、滲透、擴散、粘附于結合面,宜先用少量膠于結合面來回刮抹數遍,再涂抹至所需厚度(1~3mm),中間厚邊緣薄,然后將鋼板貼于預定位置。鋼板粘貼后,用手錘沿粘貼面輕輕敲擊鋼板,如無空洞聲,表示已粘貼密實,否則應剝下鋼板,補膠,重新粘貼。長度較小時,高應力區相對較大,混凝土墻體在早期由于水泥水化熱的釋放會引起溫度的上升與體積膨脹,在水泥水化熱釋放速度變緩以后又會由于墻體表面散熱作用而溫度下降體積收縮;炷翂w的膨脹與收縮將受到周圍構件如底板或基礎的約束,不能自由發生從而在混凝土墻體中引起受力變形,當受力變形大于混凝土的極限變形時,墻體就將出現裂縫。應力圖相對豐滿,植筋長度較大時,應力圖不夠豐滿,平均應力較低。限制等因素裂紋現象。
8、耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
★灌漿料灌漿的準備
1、檢查管道出氣孔,有大體積混凝土通常是暴露在外面的,表面與空氣或水接觸,一年四季中氣溫和本溫的'變化在大體種昆凝土結構中會引起相當大的拉應力。大體積混凝土結構通常是不配鋼筋或鋼筋數量很少,如果出現了拉應力,就要依靠混凝本身來承受。基于上述特點,在大體積混凝土結構設計中通常要求不出現拉應力或只出現很小的拉應力,對于白重、水壓等外荷載,要做到這點一般不困難。但在施工和運行期間,在大體積混凝十:結構中往往會于溫度變化而產生很大的拉成力。要將這種由于溫度變化而引起的拉應力限制在允范圍內是願不容易的。正是由于這個原因,在大體積混凝土結構中往往會出現這種所調的溫度裂縫”。凝義時,從圖中可以看出,錨固方案為垂直粘貼碳纖維布對構件受拉區域的混凝土有縱向和橫向的約束作用,由于混凝土材料的非勻質性,當荷裁達到一定水平時,首先在某薄弱裁面處混凝土淺層產生一定的裂縫,使這種約束作用通漸減弱,碳纖維布及其粘結的局部混凝土區域實際上處于上述的荷載作用(彎矩為了有效降低大面積混凝土的內外溫差,在大面積混凝土施工過程中常采用分塊澆筑。分塊澆筑又可分為分層澆筑法和分段跳倉澆筑法兩種。分層澆筑法目前有全面分層法、分段分層法、斜面分層法3種澆筑方案。在時間允許的條件下,可將大面積混凝土結構采用分層多次澆筑,施工層之間的結合按施工縫處理,即薄層澆注技術,它可以使混凝土內部的水化熱得以充分地散發,但這里應該注意的是分層澆筑的間歇時間。若間歇時間過長,則會延長施工工期,另一方面也會使原混凝土對新澆層混凝土產生較大的約束,從而在上下層混凝土結合面產生難以發現的垂直裂縫。若間歇時間過短,則正處于下層混凝土升溫階段,表面溫度較高,這時覆蓋上層混凝土,就會明顯地不利于下層混凝土的散熱,同時也容易導致上層混凝土升溫,就有可能超過混凝土要求由于本次試驗投有做未加固梁的對比試驗,無法比較與未加固梁製縫的情況。從以往眾多試驗結構可以得到較統一的結論:經碳纖維布加固后的梁,由于碳纖維布參與承受荷載,井且對混凝土梁有一定的約束作用,相對于未加固的梁而言,裂縫出現較晩一些,開製荷載略有增加,發展較為緩慢。製錨數量多而且密集,寬度遠遠小于末加固的梁。從製鑓的形態及發展來看,采用碳重手維對製鑓的開展有明顯的約束作用。的最高溫升,從而加大混凝土產生裂縫的可能性.因此,選擇上層混凝土覆蓋的適宜時間應是在下層混凝土溫度己降到一定值時,即上層混凝土溫升傳遞到下層后,下層混凝土溫度回升值不大于原混凝土最高溫升。)產生的沿碳纖維布水平縱向的粘結應力(對碳纖維布是剪應力作用效果)、(剪力產生的)垂直于碳纖維布的堅向剪應力及製鑓開展造成的豎向局部剝萬應力等多向(商向甚至三向)應力作用下的應力集中狀態,隨著荷裁的増大,這種應由于混凝土結構耐久性劣化而造成的經濟損失是巨大的,美國標準局(NBS)1998年調查表明,全年各種腐蝕損失約為2500億美元,其中混凝土橋梁修復費用為1550億美元;美國公路研究戰略計劃披露,到20世紀末,為更換或修復撒鹽除冰引起的破損公路混凝土橋面板,估計要耗資4000億美元,其中大部分是由鋼筋銹蝕引起的。英國為解決海洋環境下鋼筋混凝土構筑物的腐蝕與防護問題,每年花費將近20萬英鎊。力集中狀態逐漸加劇,當某一個或幾個應力的組合使混凝土中主應力達到或超過混凝土的抗拉(剪)強度時,碳纖維布從某一裂鐘處(剝高起源點)開始(一般是粘帶著構件表面淺層的部分混凝土)與溫凝土分離,逐新向一(或兩)側發展,依據加裁速度的不同、各種材料性質的不同、施工質量的差別等,這種分萬的發展速度有快有慢,最終發生剝高碳壞。壓條與交又壓條的曲線基本重合,也就是說從剛度提高的角度來講,二種錨固方式的加固效果相同。由于在實驗中觀察到交又壓條有剝高的現象,分析其原因很有可能為交又壓條長度不足導致。在試驗中,交又壓條就投有發現剝離的現象。與此同時,碳纖維布與鋼筋的共同作用并投有減弱構件延性,所有加固板的最終撓度部大于未加固板,碳纖維使結構延性有所提高。選擇有代表性的管道中進行灌漿試驗。
2、灌漿設備、抽真空設備,灌漿泵的壓力:0.4~0.7Mpa、真空泵的真空壓力:—0.1Mpa.
3、采用鼓鳳或按批準的規定方法進行管9年期銹蝕鋼筋混凝土板內鋼筋銹蝕在實際工程中,尚有部分碳化區對鋼筋銹蝕的影響、碳化與相對濕度對氣體擴散的影響等因素需要考慮,故模型的實際應用尚需作具體修正根據我國超厚墻體混凝土結構施工經驗,為防止產生溫度裂縫,應著重在控制混凝土溫升、延緩混凝土降溫速率、減少混凝土收縮、提高混凝土極限拉伸值、改善約東和完善構造設計等方面釆取措施。另外,在超厚墻體混凝土結構施工過程中的溫度監測亦十分重要,它可使有關人員及時了解混凝土結構內部溫度變化情況,必要時可臨時采取事先考慮的有效措施,以防止混凝土結構產生溫度裂縫。上述這些措施不是孤立的,而是相互聯系,相互制約的,必須結合實際全面考慮合理釆用,才能收到防止有害裂縫的效果。。張偉平模型考慮的因素較全面,但尚缺乏試驗和實際工程數據的檢驗。趙宇輝模型考慮因素主要是地鐵雜散電流作用,但需實際工程數據的檢驗。由上述分析可知,現有各理論或經驗模型中,多數模型中的部分參數難以確定,而少數模型的參數雖然較容易確定,但考慮的因素過于簡單,但此均存在一定問題,尚有改進的必要。當然,由于鋼筋銹蝕的復雜性,期望以一個或多個數學表達式來預測各種情況下的鋼筋銹蝕程度尚有困難,需要今后做進一步的研究,提出更好的預測方法。率為23.49%~29.95%。對比分析表明,板內鋼筋銹蝕率隨齡期增長呈非線性增大,根據變化規律提出了鋼筋銹蝕率預測模型,預測未來四年內鋼筋銹蝕率為32.98%、43.12%、55.14%、69.06%。道清理,將灌道中的水、冰和雜物清理干凈。
★灌漿料的操作
1、灌漿完成后,應防止漿體從管道流失。
2、灌漿必須從最低處或從最低的鋼絞線開始,以恒定的速度連續進行灌漿,灌滿為止,在波紋管中應適當放慢灌漿速度。
封錨
1、對需要封錨的錨徐變與混凝土內部微裂縫的發展過程有著密切的關系,當持續壓應力較大時,混凝土內部微裂縫進一步形成并開展,非線性的徐變變形也在增加。在鋼筋混凝土構件中,由于混凝土的徐變將產生應力重分布現象,如鋼筋混凝土短柱在荷載開始作用時,鋼筋和混凝土的應力是按彈性變形進行分配的,二者的應力狀態和理想的彈性體相接近。隨著時間的增長,由于混凝土徐變把自己所承擔的一部分應力逐漸轉移給鋼筋,鋼筋的應力不斷地增加,起初快,以后逐漸減慢。這樣,當構件中鋼筋的應力達到屈服強度后混凝土又繼續承載,直到混凝土壓應力也達到受壓極限值時,構件才最終破壞。構件由于這種應力重分布,就能充分利用鋼筋混凝土構件中的鋼筋強度。具,在管道灌漿完畢后先將錨具周圍沖洗干凈并對梁端混凝土進行鑿后設置鋼筋網,在錨頭外加裝錨罩,用灌漿材料將錨頭封死,最后在封錨的灌漿材料外涂刷防水涂層。
2、當漿體硬化時,所有開孔,灌漿管和氣孔均要緊密封口以防止水有有害物的侵入;
注:1<若不慎食用或濺入眼睛,應立即就混凝土在澆筑后到終凝前,尚處于可塑狀態,混凝土還不是硬化體。這一階段,混凝土可能產生裂縫網,但多為表面裂縫,較容易修復。混凝土的硬化成型,依靠水泥漿的凝結、硬化,但混凝土的凝結與水泥的凝結并不完全等同,二龍者的凝結時間不直接相關。水泥與水拌筑和后,形成的漿體起初具有可塑性和流動性,隨著時間的推移、水化反應的不斷進行,漿體逐漸失去流動能力,轉變為具有一定強度的硬化石材。醫。/SPAN>、灌漿層厚度δ≤150mm時,選用CGM-1(CGM-380)或CGM-2(CGM-340);灌漿層厚30mm<δ<150mm時,選用CGM-2(CGM-340)或CGM-3(CGM-300) ;灌漿層厚度δ≥30mm時,選用CGM-3(CGM-300)或CGM-4(CGM-300)型;路面快速搶修,選用CGM-4(CGM-270)型。
2、抗壓強度按:《GB177-85水泥膠砂強度試驗方法》;膨脹率按:《GB119-88混凝土外加劑應用技術規范》。
★灌漿料的包裝貯運
1.包裝規格:50kg/袋,存放在在理論方面,只是針對碳纖維布加固細筋混凝土受彎構件的正截面承載力闡述了理論計算方法,同時,對剝離碳壞現象也只做了定性的分析,沒有上升到理論的高度進行定量的分析等等。而且,實際應用中還存在著大量的其他受力形式的構件,以及其它結構體系,對于其它體系和構件的加固問題,還有待國家科委1994年組織的國家基礎性研究重大項目(攀登計劃)“重大土木與水利工程安全性與耐久性的基礎研究"也取得了很多研究成果。2000年5月在杭州舉行的土木工程學會第九屆年會學術討論會,混凝土結構耐久性是大會的主題之一,會議認為必須要重視工程結構的耐久性的研究。2001年,國內眾多相關專家學者在北京舉行的工程科技論壇上,就土建工程的安全性與耐久性問題進行了熱烈的討論,混凝土結構耐久性問題得到了前所未有的重視。于進一步的研究和實踐。通風干燥處并防止陽光直射。
2.保質期為6個月,超出保質期應復檢合格后方可使用 。
★灌漿料的配制:
1、CGM灌漿料拌和時,加水量應按隨貨提供的產品合格證上的推薦用水量加入,攪拌均勻即可使用。對于地腳螺栓錨固和栽埋鋼筋,用水量可根據工程實際情況適當減少。拌和用水應采用飲用水,使其它水源時,應符合現行《混凝土拌和用水標準》(JGJ63)的規定。
2、 CGM灌漿料的拌和可采用機械攪拌或人工攪拌。 推薦采用機械攪拌方式,攪拌時間一般 為1-2分鐘(嚴禁用手電鉆式攪拌器)。采用人工攪拌時,應先加入2/3的用水量拌和2分鐘,其后加 入剩余水量攪拌至均勻.
3、現場使用時,嚴禁在CGM灌漿料中摻入任何外加劑、外摻料!
4、 每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
5、 冬季施工時,CGM灌漿料及拌和水應符合現行《鋼筋混凝土工程施工及驗收規范》(GB50204)的有關規定。
6、 攪拌地點應盡量靠近灌漿料施工地點,距離不宜過長。
參考用量:
參考用量計算以2.28~2.4噸/立方米為依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。贛州超早強灌漿料廠家|江西灌漿料廠家直銷。