★<預應力加固法是采用外加預應力鋼拉桿對結構構件或整體進行加j的方法,特點是通過預應力手段強迫后加部分一拉桿或撐桿受力,改變原結構內力分布并降低結結構應力水平,致使一般加}u結構中所特有的應力滯后現象得以完個消除口適用于提高承載力、剛度和抗裂性加固。缺點是減小建筑凈空、影響途筑外立面,影響上層樓蓋結構或屋面防水構造。此法不宜用于處在高溫環境下的混凝土結構,也不適用于混凝_一卜收縮徐變大的混凝土結構。/B>灌漿料的 產品用途:
1.灌漿料可進行地鐵、隧道、地下等工程逆打法施工縫的嵌固。
2.建在后張有粘結預應力混凝土結構施工的一系列工序中最重要的施工環節自然是預應力孔道注漿。注漿是否飽滿、密實將對橋梁在使用過程內的安全性和耐久性有直接的影響。實際工程中預應力管道較長,很難使得預應力孔道完全處于水平狀態,這樣就很難做到預應力鋼筋完全處于漿體中,而且實際的壓漿過程中存在壓漿不密實的情況,這樣就無從保證預應力鋼筋被完全保護起來。然而預應力鋼筋在空氣中易于銹蝕尤其是在高應力狀態下。這就使得橋梁在使用過程中存在安全隱患。筑物的梁、板、柱、基礎、地坪和道路的補強、搶修和加固。
3.灌漿料可進行地腳螺栓和鋼筋的錨固及結構補強。4.適用于機器底座、地腳螺栓等設備基礎灌漿及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
CGM-1通用型 -----(流動性280以上,強度等級,65兆帕以上)
CGM-2豆石型 ------ (流動性260以上,適用于建筑加固及單體較大面積灌漿)
CGM-3超細型------(流動性300以上,強度標號C60,有較大流動性需求)
CGM-4高早強型------(有搶工需求的加固,及設備基礎等,一天強度可達C30,3天達50-55兆帕以上)
CGM-5搶修型
CGM-橋梁支座型----(主要用于橋梁支座上)
CGM-340A型------(主要用于要求較高的設備基礎二次灌漿上)
★灌漿料的 產品特點:
1.微膨脹性:保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
2.灌漿料的耐久性強:經上百次疲勞日本在八十年代末,九十年代初,阪神大地震及韓國三豐百貨大樓倒塌事件后,眾多大學、科研機構、材料生產廠家相繼進行了大量FRP加固研究,使日本的FRP加固走在了世界的前列。據有關資料統計,自1993到1997年,僅日本東燃公司在日本用于混凝土結構加固修補的碳纖維布的年需求量即從2.5萬m2,增長到70萬所2,1997年植筋膠植筋可利用鉆孔機具,在預定部位,按設計孔徑鉆至規定深度,進行清孔,注入結構膠,植入鋼筋,使鋼筋與混凝土、磚等通過結構膠粘結在一起,滿足傳遞結構受力的要求。產值折合人民幣約15億元,且有大量出口,而東燃公司產量僅占日本的一半左右。實驗,50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
3.灌漿料的高強、早強:1—3天抗壓強度可達30—50Mpa以上。4. 可冬季施工:允許在-10C氣溫差裂縫:由于溫度變化,混凝土熱脹冷縮而形成的裂縫,此類裂縫一般集中在東西單元的房間、屋面層和上部樓層的樓板。結構裂縫:雖然現澆樓板承載力均能滿足設計要求,但由于預制多孔板改為現澆板后,墻體剛度相對增大,樓板剛度相對減弱。因此在一些薄弱部位和截面突變處。往往容易產生一些結構性裂縫。例如:墻角應力集中處的45°斜裂縫,板端負彎矩較大處的板面裂縫等。構造裂縫:PVC管處混凝土厚度減薄,容易出現裂縫。收縮裂縫:混凝土在塑性收縮、硬化收縮、碳化收縮、失水收縮過程從這三方面來講,現有建筑物總體上存在不少問題。尤其是工業建筑物在經過一段時間的使用后性能將明顯下降。氣次世界大戰以后,世界上經濟發達國家的建設大體上經歷了二個階段即:一、大規模新建;二、新建和改造并舉:三、除部分新建外,重點轉向舊建筑物的維修和改造,并使其現代化。建筑業重心的轉移是其自身發展和社會經濟條件決定的。據統計資料顯示,改建比新建可節約投資40%,縮短工期50%,收回投資的速度比新建廠房快3-4倍,正是由于上述原因使得維修改造業迅速發展起來。中易形成各種收縮裂縫。溫進行室外施工。
5. 自流性高:可通過選擇不同pH值溶液及其與不同硫酸根離子濃度溶液耦合作為腐蝕介質進行加速試驗,結果表明,酸性水腐蝕加速試驗不宜選用酸性較強的溶液(pHQ)作為侵蝕介質,并要根據實際的腐蝕環境選擇合適的硫酸根離子濃度,因為溶液中硫酸根離子濃度的不同對混凝土材料形成的腐蝕進程有顯著差異。酸性水腐蝕下的混凝土性能劣化宜采用能夠反映材料內部結構變化和整體性能變化的強度指標來表征,不宜采用僅能表征材料外表受侵蝕情況變化的質量損失、外觀形貌指標。填充全部空隙,滿足設備二次灌漿的要求。CGM-1通用型灌漿料,流動性280以上,強度等級,65兆帕以上。高強無收縮灌漿料以特種水泥作為結合劑,特選高強度材料為骨料,輔以高流態,微膨脹,防離析等物質配制而成。
灌漿料具有質量可靠,降低成本,縮短工期和使用方便等優點。從根本上改變設備底座受力情況,使之均勻地承受設備的全部荷載,從而滿足各種機械,電器設備(重型設備高精度磨床)的安裝要求,是無墊安裝時代的理想灌漿材料。
★灌漿料的參考用量:
參考用量計算以2.28-2.4噸/立方米為依據,計算實際使用量。
★<王榮銑[231認為根據施工環境差異,正確的選用水泥是保證樁基具有良好耐久性能的關鍵。因為混凝土各個組成部分中,錨具、夾具、硬度在國家標準GB/ T14370 - 93中沒有做硬性規定,應向供方索要產品硬度標準和權威的認可證明,如設計文件有規定,應按設計執行。預應力材料進場前還要核對預應力筋是否與錨具匹配。水泥石最容易與外部介質發生反應而被腐蝕,一旦水泥石遭受侵蝕,那么混凝土性能將受到嚴重影響。而Zivica[201則認為水泥的選擇對提高混凝土耐久性能的可能性很小。NeleDeBelie等13剮通過不同膠凝材料配制混凝土在乳酸和醋酸復合酸性溶液中侵蝕的實驗,證明在酸性強的環境中0H<4),膠凝材料對混凝土耐酸性的影響不大;用礦粉代替部分水泥配制混凝土,對提高混凝土耐酸性的效果不大。而在弱酸性環境下時,不同膠凝材料配制的混凝土的耐酸性無太大差異。R.Helmut認為侵蝕溶液的p}I_和5時,鋁含量高的水泥耐酸性要好于OPC。這不僅歸因于水泥水化產物中CH氫(氧化鈣)的減少,同樣更多對酸較為穩定的水化鋁酸鈣和AI(OH)3的存在起到保護作用也有很重要的地位。研究了硫酸、硫酸鹽環境下水泥品種、礦一般說來,混凝土對鋼筋抵御外來侵蝕是一種天然的屏障:從物理上混凝土可以化解或減小外來侵蝕,混凝土能隔斷有害物質對鋼筋的直接侵蝕;從化學上來講,由于水泥中氧化鈉、氧化鉀以及水混水化反應生成的氫氧化鈣的存在,水混膠凝體結構中存在高堿性孔隙液,一般混凝土pH值在(12,5~13.5)之間[33-36],這對鋼筋又是一重保護。物摻和料和外加劑等因素對混凝土強度、腐蝕深度的影響。結果表明,與硅酸鹽水泥相比,硫鋁酸鹽水泥、抗硫酸鹽水泥等特種水泥具有良好的抗侵蝕性能;礦物摻和料硅(灰、粉煤灰、礦粉等)和高效減水劑(緩凝型除外)、膨脹劑等外加劑的摻入能有效配制高抗滲的混凝土。在酸性土壤中,礦渣水泥在酸性土壤中的耐蝕性較其他水泥強;與CaO含量相對較小的低強混凝土相比,CaO含量高的525硅酸鹽水泥配制的高強密實性混凝土的抗侵蝕能力更強。Sersale和Frigione等[261通過試驗研究不同水泥的抗酸腐蝕性能。采用摩爾比為2:l硫酸和硝酸的混合溶液,模擬pH值為3.5的酸雨溶液。通過試驗結果發現:不同水泥基材料的抗酸性能差異很大,其中礦渣水泥礦(渣含量70%)和硅酸鹽水泥的抗硫酸侵蝕性能較好,而火山灰水泥抗硫酸則比較差;水泥水灰比越小,抗酸侵蝕性能也越好。Ziviea和Bajza在實驗中發現火山灰水泥具有較好的耐酸性;而Mehta等人卻在試驗中發現,火山灰水泥的耐酸性不如普通的硅酸鹽水泥。原因是火山灰水泥試驗樣品的密實性比普通硅酸鹽水泥的要差。而密實性是砂漿或混凝土提高耐酸性的一個極其重要的途徑。關于在水泥中摻入粉煤灰、礦粉、硅粉等礦物摻合料能否提高混礦物摻合料一般統稱摻合料,水泥混凝土使用的多為硅鋁酸鹽類的礦物質細粉材料,目前使用較多的是粉煤灰、;逪爐礦渣粉和硅灰及其復合礦物摻合料。粉煤灰的火山灰活性,改善了膠Z凝材料的絮凝情況,改善了混凝土中砂漿均勻性,也就改善了混凝土的均勻性。粉煤灰的摻入降低了水化熱,當摻量不大時,混凝土的抗壓強度降低不多,彈性模量和徐變改變不大,相對抗拉強度有所改善,抗裂性能有所提高。當摻量很大時,強度較低,彈性模量較低,相對徐變較高,增大了緩釋應變能力,提高了混凝土抗裂性能。凝土耐酸侵蝕能力,研究人員在試驗過程中得到不同或者截然相反的結論。Duming和Mehtal291研究表明在混凝土當梁體鋼筋與預應力管道相碰時,可適當移動梁體的構造鋼筋或進行適當彎折。對預應力筋豎彎及平彎處的箍筋應特別注意綁扎牢固。在綁扎梁體鋼筋時應同時綁扎橋面及橫隔板的預留鋼筋,在鋼筋較密處,應注意混凝土的灌注通路,必要時將相鄰鋼筋成束綁扎。梁體鋼筋最小凈保護層為20mm,綁扎鐵絲尾段不得伸入保護層內。當采用墊塊控制凈保護層厚度時,墊塊應采用與梁體同等壽命的材料,以保證耐久性,墊塊間距50cm呈梅花型布置。鋼筋直徑在16mm以上的鋼筋采用電焊連接,其焊接長度:單面為10d,雙面焊為5d(d為鋼筋直徑),配置在同一截面的接頭嚴格按施工規范執行。中加入硅灰能夠提高混凝土的耐硫酸(1%)能力,是由于硅灰的加入減少了混凝土中CaO的量。但是Montenyl30】聲明加入硅灰能夠使混凝土中的孔隙直徑變小,最可幾孔徑減小,由于細小毛細孔的虹吸作用使得混凝土的耐硫酸(0.5%)能力下降。還指出60%的礦粉摻入量能夠明顯提高混凝土的抗硫酸性能。A.Bertron的研究也表明在水泥中摻入65%的礦粉能夠提高硬化漿體的耐酸性。Chang[3l】在研究中發現在混凝土中摻入60%礦粉或者56%與7%硅灰復合使用時,耐1%硫酸性能比100%OPC混凝土差。Chang和Tamimi又指出摻粉煤灰和硅粉的混凝土耐1%硫酸的能力關于預應力碳纖維片材加固技術的研究工作是于十年前開始的。在國外起步,英美及加拿大、日本、瑞士等發達國家的許多研究機構在該技術研究方面做了在植筋邊距較小的情況下,植筋周圍混凝土會發生劈裂破壞。大量研究工作,但由于張拉機具、夾具、錨具等關鍵技術未能取得突破,進展不大,僅瑞士Sika工程公司與英國Mouchel工程公司在碳纖維張拉設備方面取得部分實用性成果。國內這個方面開展研究工作有清華大學等十多所高校及研究機構,但國內的研究工作主要集中在預應力碳纖維布材方面,關于預應力碳纖維板材的研究較少。,即使是在表面去除的情況下橋梁的安全度,是通過結構的強度、剛度、穩定性及耐久性等指標來衡量的。橋梁結構應具有足夠的強度,以承受作用于其上的重力和附加力;結構各部必須具有足夠的剛度,以使其在荷載作用下不產生過大的撓曲和變形;結構各部尺寸必須具有適當大小,以使其承受軸向壓力時構件不發生屈曲,喪失穩定性。不僅結構的局部各(組成部分)要保證具有足夠的強度、剛度和穩定性,同時結構也要具有較高的耐久性。也有較大的提高。A1一Tamimi等人實驗表明,在混凝土中47%的水泥被石粉代替時,浸泡在1%的硫酸中18周后的質量損失9%,相比OPC混凝土要。保玻ァB>灌漿料的包裝儲運:
1、灌漿料為50kg袋裝,存放在通風干燥處并防止陽光直射。
2、保質期為3<從材料的角度對混凝土的收縮及裂縫防治等進行了較多的研究。提出了自收縮抑制措施:利用輕質多孔集料和多孔活性摻合料的“自養護”作用,可以抑制高性能混凝土的自收縮。為了不損失混凝土的強度可用浸水輕骨料替代部分砂石骨料。b.利用粉煤灰的自收縮“能量滯后釋放效應”,粉煤灰摻量在10~30%范圍內,不僅不損Z失后期強度,而且還可以有效地抑制自收縮。/SPAN>個月,超出保質期應復檢合格后方可使用。
★灌漿料的 施工工藝:
1.灌漿
(1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
(2).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
(3)<高性能水泥復合砂漿是以硅酸鹽水泥和高性能混凝土摻和料為主要成分,并基于植筋法的砌體.復合砂漿枯結面抗剪試驗研究添加一定比例的外加劑和少量有機纖維,加水和砂拌合而成的一種具有良好工作度的砂漿,具有高強度、低收縮、高抗裂性、密實性好的優點,并與原構件混凝土表面有較高的粘結強度。加固時在界面上涂刷界面劑,界面劑以硅酸鹽水泥和外加劑拌合而成,是一種低稠度漿體,可以顯著增強高性能水泥復合砂漿與原構件的粘結性能。/SPAN>.在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
2. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
3. 緩蝕劑在混凝土中應當有良好的溶解性,并能快速到達鋼筋的表面。同時,又要對混凝土的物理性能和耐久性沒有不利影響。但是緩蝕劑在鋼筋混凝土結構中的應用時間還不長,其長期的緩蝕效果有待進一步證實。多種無機和有機緩蝕劑在混凝土中的緩蝕效果已有廣泛研究。而單氟磷酸鈉、胺、醇胺、脂肪酸酯及其鹽等司作為遷移型緩蝕劑在混凝土修補方面引起了廣泛的興趣,并得到了一定的應用。基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜銹脹開裂后的銹蝕量預測對于混凝土在泵送混凝土現澆的各種鋼筋混凝土結構中,特別是板、墻等表面系數大的結構之中,經常出現一種早期裂縫。這種裂縫為斷續的水平裂縫,裂縫中部較寬、兩端較窄、呈梭狀。裂縫經常發生在板結構的鋼筋部位、板肋交接處、梁板交接處、梁柱交接處、結構變截面的地方。這種裂縫產生的原因主要是混動性過大和流動性不足以及不均勻,在凝結硬化前沒有沉實或者沉實不夠,當混凝土沉陷時受到鋼筋、模板抑制以及模板移動、基礎沉陷所致。裂縫在混凝土澆筑后1~3小時出現,裂縫的深度通常達到氯離子存在時混凝土中鋼筋的腐蝕機理如下flo:混凝土中的Cl_與OH一離子在鋼筋表面競爭性吸附,爭奪陽極反應產生的二價鐵離子Fe2+,生成易溶的FeCl24H20,該腐蝕產物遷移到富氧的地方后進一步氧化成Fe(OH)3,同時Cl一重新回到陽極區繼續參與腐蝕反應,產生更多的Fe2+,從而形成一種自催化的腐蝕過程。鋼筋上表面。結構的耐久性評估與可靠性評價更有意義。在銹蝕結構的評估中,混凝土構件的裂縫寬度是重要的現場實測數據之一。而裂縫寬度和裂縫形態也是銹蝕構件內部銹蝕狀況的外部反映,裂縫寬度和裂縫形態跟鋼筋銹蝕量有關。在銹脹開裂后的鋼筋銹植筋設計一般原則:當采用植筋錨固時,其基本原則是保證鋼筋屈服,并假定在使用極限狀態的粘結應力均勻地布傳統壓力灌漿中,漿體本身和施工工藝帶有一定的局限性,主要表現為:灌入的漿體中常會含有氣泡,當混合料硬化后,存集氣泡會變為孔隙,成為自由水的聚集地。這些水可能含有有害成分,易造成預應力筋及構件的腐蝕。置在整個鋼筋長度上。蝕量評估方面,目前主要都是采用基于縱向裂縫寬度的評價方法。物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
4. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,可采用"自重法灌漿<在構造理論中提出了一種簡單的計算模型,即假定圓形骨料不變形且均勻分布于勻質彈性水泥石中,當水泥石產生收縮時引起內應力,這種應力可引起粘著微裂縫和水泥石微觀裂縫,混凝土的微觀裂縫肉眼是看不見的,肉眼可見裂縫范圍一般以0.05毫米為界。觀測證實,結構物的裂縫是時刻不停的運動著,這種運動包含兩種意思:一是裂縫寬度的擴展與縮小;二是裂縫長度的延伸及裂縫數量的增加。裂縫穩定的運動是正常的,工程中要防止的是不穩定的裂縫運動。/SPAN>"、高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
5. 灌漿料的攪拌<采用粘鋼抗剪加固RC梁時,鋼板的作用機理與箍筋類似,桁架——拱經典模型依然適用,RC梁腹板兩側粘鋼后,當加固梁未開裂時,鋼板沒有顯著貢獻;當加固梁開裂后,裂縫范圍內鋼板應力明顯變大。除了對RC梁抗剪承載力有貢獻外,粘貼鋼板對限制斜裂縫的發展,提高斜裂縫處混凝土骨料的咬合作用有明顯效果。/SPAN>
按灌漿料重量的12%-14%的加水量加水攪拌,水溫以5~40℃為宜。采用機械攪拌時間一般為1~2分鐘;采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
6、養護
(1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋不加阻銹劑混凝土試塊的腐蝕電流密度相對于大部分正交試驗的混凝土試塊要大,腐蝕腐蝕電流密度最小的是鉬酸鈉含量為0.39/L,二乙烯三胺含量為30mL/L,丙烯基硫脲含量為1.69/L,1,4一丁炔二醇含量為5rdI。綜合以上情況可以看出沒有加阻銹劑的混凝土試塊的極化曲線要比加阻銹劑的斜率小,說明其腐蝕電流密度大。通過比較線性極化的斜率來比較腐蝕電流密度的大小。線性極化的斜率越大,其腐蝕電流密度越小。塑選用橡膠管前,仔細做好市場調查,盡量在信譽良好的廠家訂貨,注意出廠合格證和材質驗收。必要時向省級以上橡膠產品檢測中心送檢,出具一些重要指標的報告:外觀、不圓率、拉伸強度、拉斷伸長率、300%定伸強度、硬度、伸長率變化率等重要質量指標。其質量符合《客運專線預應力混凝土預制梁暫行根據應用、研究現狀分析可見,目前對植筋的研究大多是以工程應用為目的,對基材處于復雜應力狀態下對植筋系統粘結滑移性能及受力機理的影響研究較少。隨著植筋技術在結構加固改造工程中已被廣泛應用,通過對植筋系統考慮粘結滑移的有限元分析,來認識植筋系統在復雜受力狀況下受力機理的研究也逐漸展開。植筋錨固構件在受到外力作用后,構件中的鋼筋、混凝土、粘結劑之間在相互約束的同時會產生相對滑移,為模擬不同介質之間的這種粘結約束和相對滑移,前人針對鋼筋與混凝土的粘結滑移問題的處理方法是非常值得借鑒的。在鋼筋混凝土有限元分析中,已提出了多種不同形式的粘結單元模式,有雙垂直彈簧聯結模型、粘結區單元、斜壓桿單元、四節點線性邊界單元和六節點曲邊邊界單元等。技術條件》。料薄膜并加蓋巖棉被等進前處理。在橋梁結構分析的開始,首先要建立橋梁結構的有限元模型,即為前處理。定義荷載和求解。定義荷載就是在結構模型中定義各個施工階段的荷載,通常是指橫載和活載,除此之外,在施工過程中還有一些考慮不到的臨時荷載等。施加完荷載后根據實際的結構情況給定邊界條件模式。行養護<拌制水泥漿時,水泥漿中水的含量必須得到有效控制,可用經法定計量機構校準的秤或其它計量器具進行稱量,且其重量誤差應控制在2%以內。/SPAN>,或在灌漿層終凝后立即灑水保濕養護。
(2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。贛州無收縮灌漿料批發|江西灌漿料工廠。