灌漿料運用于機器底座、地腳螺栓、廠房二次灌注、橋梁支座、梁板柱加固。
★灌漿料的產品選擇
施工前的準備
1、機器攪拌:混凝土攪抖機或砂漿攪抖機;
2、人工攪拌:攪拌槽及鐵鏟若干<壓力和速度??在真空灌漿過程中,一般情況下壓力控制在0.5~0.7 MPa。當孔道較長時,壓力可以達到1.0 MPa,同時應經常檢查孔道真空度的穩定性;灌漿時速度一般控制在5~15m/min,對豎向孔道的灌漿宜采用低限,對較長或直徑較大的管道或在炎熱氣候條件下,壓漿應采用較快的速度,但應注意壓漿軟管和孔道內的壓力情況,防止超壓將軟管壓裂事故的發生。/SPAN>;
3、水桶若干;
4、臺秤若干;
5、流槽;?
6、高位漏斗、灌漿管及管接頭;
7、灌漿助推器;
8、模板(鋼模、木模);
9、草袋、巖棉被等;
10、棉紗、膠帶;
1、灌漿層厚度δ≥150mm時,選用CGM-1通用型或CGM-2豆石型;
2、路面快速搶修,選用CGM-4超早強型;
3、灌漿層厚度δ≤30mm時,選用CGM-3型超細型;
4、灌漿層厚度30mm<δ<150mm時,選用CGM-1通用型。<國內外學者對銹蝕鋼筋混凝土結構耐久壽命進行了很多研究,認為混凝土中鋼筋的銹蝕發展過程分為四個階段。當銹蝕程度達到t,所對應的程度時,一般認為結構不能在繼續使用,使用壽命終止。所以混凝土結構因鋼筋銹蝕的壽命過程分為三個階段:第一階段銹蝕孕育期to,從澆注混凝土到鋼筋開始銹蝕為止;第二階段為銹蝕發育期t.,從鋼筋開始銹蝕發展到混凝土保護層表面因鋼筋銹脹而出現破裂;第三階段為裂縫發展期t,從混凝土表面因鋼筋銹蝕腫脹開始破壞發展到混凝土嚴重脹裂、剝落破壞,即達到正常使用極限狀態。/o:p>
★灌漿料的特點
1、自北京、天津的一些立交橋,雖然投入使用的時間不長,但暴露出日益嚴重的鋼筋腐蝕破壞現象,不得不花費巨資加以修補。除造成巨利用碳纖維布對混凝土構件進行抗剪加固,其所起作用與構件中的箍筋類似,受力特征也與之相近。加固原理為利用碳纖維布對混凝土的約束來阻止剪切裂縫的開裂和發展。試驗表明,采用碳纖維和加同后的粱極限承載力明鼴提高,抗剪強度提高幅度MCI-A使砂漿試塊的抗硫酸鈉侵蝕系數為1.Ol,使砂漿試塊的抗硫酸鈉及氯化鈉的侵蝕系數為1.oo。遷移型阻銹劑MCI.A可在一定程度上提高試塊的抗碳化性能。MCI.A與甲基硅酸鈉同時使用甲基硅酸鈉摻量為0.2%~O.4%時,混凝土流動性略有增加,混凝土3天強度提高20%左右、28天強度提高10%左右。當摻量為0.6%時,降低混凝土流動性和混凝土強度。甲基硅酸鈉的加入可明顯降低混凝土的吸水性,而單獨摻加阻銹劑MCI-A、sika901對混凝土本身的吸水性沒有影響。可達65%~95%I時裂縫的寬度得到控制。大的經濟損失外,人們的生命也受到威脅,由于鋼筋腐蝕帶來的安全事故及隱患不勝枚舉。20世紀60年代以后,世界各國的政府試驗室,根據各自的國情和鋼筋銹蝕問題顯現的早晚及危害程度,都相繼開展了一些調查研究工作。目前,美、英等發達國家對混凝土中鋼筋腐蝕問題的研究己有不少成果,初步解決了鋼筋腐蝕的機理問題。流性高
可填充全部空隙,滿足設備二次灌漿的要求。
2、可冬季施工
允許在-10℃氣溫下進行室外施工<近年來,工程裂縫是影響正常使用極限狀態的主要因素。裂縫產生的原因主要是變形作用,如溫度變形、收縮變形、基礎不均勻、沉降變形等多因素,統稱為變形作用引起的裂縫問題,此類裂縫幾乎占全部裂縫的80%以上。對于變形作用引起的裂縫研究還很不成熟,缺乏有美規范及規程,它涉及到結構設計、地基基礎、施工技術、材料質量、環境狀態等諸多因素,特別是泵送混凝土施工工藝的發展,使得混凝土製裝搾制的技術難度大大增加。例如過去干硬性及預制混凝土的收縮變形多有為25x10-4~35xl0-4,而現在票送流態混凝土約為6x10-4~8x10-4,水化熱也大幅度增高。/SPAN>。
3、灌漿料的抗離析
克服了現場使用中因加水量偏多所導致的離析現象。
4、微膨脹性<涂覆層機械損傷對其保護作用的影響,表面有涂覆層的鋼筋在混凝土中腐蝕破壞的本質機理及研究方法等重要問題,開展比較深入、系統的研究。以期能進一步發展適合于鋼筋混凝土結構復雜體系腐蝕與防護的先進研究方法,探明表面有涂覆層的鋼筋在混凝土中的腐蝕機理、防國內對建筑工程大體積混凝土的旌工還沒有形成明確的溫度控制標準。首先在相關標準中只規定內表溫差不應超過25℃,而未指明相應的結構尺寸,這是不十分科學的。例如有兩塊大體積的混凝土,厚度分別為1.oⅡl和3.0IIl,而內表溫差都控制從混凝土收縮試驗數據的結果中可以發現,雖然各試驗所測得的收縮值大不相同,但收縮曲線形狀非常一致,具體表現為混凝土早期干燥收縮較大,收縮發展速度較快,如ld收縮值達到120d收縮值的5---,10%,2d收縮值可以達到120d收縮值的15%左右,3d收縮值可以達到120d收縮混凝土中環氧涂層鋼筋在實驗室干濕交替循環以及實海潮差區環境中的腐蝕行為及腐蝕機理。鋼筋表面完整的環氧涂層在實驗室干濕交替循環以及實海潮差區環境中都表現出了良好的阻擋層性質,對鋼筋基體提供了良好的保護。在實驗室干濕交替環境中,當鋼筋表面環氧涂層存在人為劃傷缺陷,由于該缺陷的尺寸(4mmX0.4mm)小以及供氧的不足,限制了腐蝕微電池的形成,使劃痕下的鋼筋發生腐蝕需要相當長的時間,并且不存在劃痕附近環氧涂層的陰極剝離、脫層等現象。在實海潮差環境中,當鋼筋表面環氧涂層存在的人為劃傷缺陷尺寸(10mm×O.8mm)較大時,腐蝕微電池可以形成,鋼筋在前5個月表現為鈍化,第6個月后發生腐蝕。但劃痕附近的環在混凝土中宜加入一定量的粉煤灰或磨細礦渣(部分替代水泥),摻量通過配合比設計、試驗確定,以改善混凝土的抗裂性能。當混凝土中摻入礦粉時,礦粉細度宜與水泥的細度接近。摻加硅灰時,應有L可靠的技術措施。有條件的也宜對混凝土摻合料進行抗裂性試驗和評價。摻加合適的外加劑有利于裂縫的防治,選擇外加劑時,應注意外加劑之間的相容以及與水泥的相容性。對于抗裂性要.求高的混凝土,合適條件下宜選用具有減縮抗裂性能的外加劑。氧涂層也牢固地結合在鋼筋基體表面,沒有發生陰極剝離、分層等現象灌漿操作中的檢查:觀察壓漿壓力、檢查任何滲漏。穩壓壓力、穩壓時間檢查。取樣檢查灰漿28t標養抗壓強度。排氣孔、排水孔是否依次關閉。。值的20%以上,14d收縮值可以達到120d收縮值的50%左右,同時總干燥收縮值較大,大多數混凝土試件中后期的干燥收縮總值大于400微應變,此變形值超過了混凝土自身所能抵抗的拉應變。因此,可以認為干縮是現代混凝土開裂的主要原因之一。為25℃,在其它條件相同的情況下,則內部溫度應力大小明顯不一樣。如果厚度為3.0m的這塊混凝土承受的溫度應力恰好達到將要開裂的臨界狀態,那么另一塊厚度為1.Om的混凝土將必裂無疑。因而,科學的提法應當把內表溫差與相應的結構尺寸聯系起來,也就是“溫度梯度”的概念。應當把王榮銑[231認為根據施工環境差異,正確的選用水泥是保證樁基具有良好耐久性能的關鍵。因為混凝土各個組成部分中,水泥石最容易與外部介質發生反應而被腐蝕,一旦水泥質量控制與標準:要使粘鋼加固獲得好的效果,特別要保證加固施工的質量,除遵循一般施工原則外,結合各工程特點,施工中應注意如下幾點:為保證粘貼鋼板牢固有效,須控制鋼板寬度和厚度,而主梁某些部位所需補強的鋼板截面面積較大,須采用兩層或多層粘貼(即鋼板上貼鋼板)。粘好鋼板后,必須嚴格保證無空鼓,否則應剝下鋼板,補膠、重新粘貼。加固構件的粘鋼質量,一般采用非破損檢驗,即從外觀檢查鋼板邊緣溢膠色澤,硬化程度,用小錘敲擊鋼板表面,以回音來判斷有效粘接面積,如出現空鼓等粘貼不密實的現象采用壓力灌膠的方法進行補救,若粘結面積錨固區少于90%,非錨固區少于70%(錨固區由設計計算確定),則判定粘結無效,需重新施工。石遭受侵蝕,那么混凝土性能將受到嚴重影響。而Zivica[201則認為水泥的選擇對提高混凝土耐久性能的可能性很小。NeleDeBelie等13剮通過不同膠凝材料配制混凝土在乳酸和醋酸復合酸性溶液中侵蝕的實驗,證明在酸性強的環境中0H<4),膠凝材料對混凝土耐酸性的影響不大;用礦粉代替部分水泥配制混凝土,對提高混凝土耐酸性的效果不大。而在弱酸性環境下時,不同膠凝材料配制的混凝土的耐酸性無太大差異。R.Helmut認為侵蝕溶液的p}I_和5時,鋁含量高的水泥耐酸性要好于OPC。這不僅歸因于水泥水化產物中CH氫(氧化鈣)的減少,同樣更多對酸較為穩定的水化鋁酸鈣和AI(OH)3的存在起到保護作用也有很重要的地位。研究了硫酸、硫酸鹽環境下水泥品種、礦物摻和料和外加劑等因素對混凝土強度、腐蝕深度的影響。結果表明,與硅酸鹽水泥相比,硫鋁酸鹽水泥、抗硫酸鹽水泥等特種水泥具有良好的抗侵蝕性能;礦物摻和料硅(灰、粉煤灰、礦粉等)和高效減水劑(緩凝型除外)、膨脹劑等外加劑的摻入能有效配制高抗滲的混凝土。在酸性土壤中,礦渣水泥在酸性土壤中的耐蝕性較其他水泥強;與CaO含量相對較小的低強混凝土相比,CaO含量高的525硅酸鹽水泥配制的高強密實性混凝土的抗侵蝕能力更強。Sersale和Frigione等[261通過試驗研究不同水泥的抗酸腐蝕性能。采用摩爾比為2:l硫酸和硝酸的混合溶液,模擬pH值為3.5的酸雨溶液。通過試驗結果發現:不同水泥基材料的抗酸性能差異很大,其中礦渣水泥礦(渣含量70%)和硅酸鹽水泥的抗硫酸侵蝕性能較好,而火山灰水泥抗硫酸則比較差;水泥水灰比越小,抗酸侵蝕性能也越好。Ziviea和Bajza在實驗中發現火山灰水泥具有較好的耐酸性;而MehFRP加固體系的抗腐蝕性主要是樹脂在起作用,而不是由于FRP本身。為了進一步弄清FRP加固體系的抗腐蝕性機理以及FRP和樹脂在防腐過程中所起的作用,一些學者對不同FRP種類、不同FRP層數、不同FRP纖維方向以及不同的樹脂類型進行了系統研究,對這些因素的研究有助于我們弄清FRP加固鋼筋混凝土柱的抗腐蝕作裂縫產生的主要原因概括分為四大類:施工與環境條件、結構及外力、原材料及配合比、施工過程,共40個小項。這些原因對裂縫發生的綜合影響是復雜的。現澆混凝土結構在施工期間開裂,有些是.由上述單一原因引鐵皮波紋管試件孔道注漿體推出后,注漿體上的螺旋肋均在推出過程中被磨平,這一破壞現象表明:由于鐵皮波紋管本身、鐵皮波紋管內、外注漿體和混凝土的抗剪強度以及混凝土和注漿體與塑料波紋管間結合面的粘結強度均較高,鐵皮波紋管內外與注漿體和混凝土間結合的整體性良好,使得注漿體沿著結合面推出時,必須將鐵皮波紋管肋間的混凝土或注漿體剪壞才有可能,因而其承載能力由肋間混凝土或注漿體的抗剪強度所控制,故其承載能力要高得多。起的,但更多的裂縫不是由單一因素引起,而是上述多種原因的綜合作用形成的。用機理。ta等人卻在試驗中發現,火山灰水泥的耐酸性不如普通的硅酸鹽水泥。原因是火山灰水泥試驗樣品的密實性比普通硅酸鹽水泥的要差。而密實性是砂漿或混凝土提高耐酸性的一個極其重要的途徑。關于在水泥中摻入粉煤灰、礦粉、硅粉等礦物摻合料能否提高混凝土耐酸侵蝕能力,研究人員在試驗過程中得到不同或者截然相反的結論。Duming和Mehtal291研究表明在混凝土中加入硅灰能夠提高混凝土的耐硫酸(1%)能力,是由于硅灰的加入減少了混凝土中CaO的量。但是Montenyl30】聲明加入硅灰能夠使混凝土中的孔隙直徑變小,最可幾孔徑減小,由于細小毛細孔因為鋼筋混凝土結構中鋼筋銹蝕會帶來結構失效,所以鋼筋銹蝕是一個最常遇到的耐久性問題,其中因[C1]滲透造成的鋼筋銹蝕l司題尤為嚴重,國外大量的研究集中于此。最著名的為1982年瑞典水泥和混凝土研究所Tuutti提出的'調筋銹蝕與服務年限的模型。的虹吸作用使得混凝土的耐硫酸(0.5%)能力下降。還指出60%的礦粉摻入量能夠明顯提高混凝土的抗硫酸性能。A.Bertron的研究也表明在水泥中摻入65%的礦粉能夠提高硬化漿體的耐酸性。Chang[3l】在研究中發現在混凝土中摻入60%礦粉或者56%與7%硅灰復合使用采用實驗室通電加速銹蝕法對HPB235、HRB335、HRB400及HRB500四類鋼筋進行銹蝕,觀察其銹后截面變化情況,表面銹坑形狀及深度,并通過對其進行拉伸試驗,觀察其銹后力學性能的退化情況。通過分析銹蝕前后鋼筋各項力學性能參數的退化情況,研究銹蝕對鋼筋力學性能的影響,比較不同類型、不同直徑鋼筋銹后力學性能退化的規律;設計對比實驗,比較相同銹蝕條件下高強鋼筋與普通鋼筋的銹蝕情況,研究高強鋼筋的耐腐蝕性。時,耐1%硫酸性能比100%OPC混凝土差。Chang和Tamimi又指出摻粉煤灰和硅粉的混凝土耐1%硫酸的能力,即使是在表面去除的情況下也有較大的提高。A1一Tamimi等人實驗表明,在混凝土中47%的水泥被石粉代替時,浸泡在1%的硫酸中18周后的質量損失9%,相比OPC混凝土要。保玻。“溫度梯度”列為溫度控制的一個項目;或者對不同厚度的砼結構,要規定不同的內表溫差控制值。其次,“溫度陡降”的概念不明確。規范規定陡降不應超過10℃,但沒說明陡降發生的時間,讓使用者無法解釋。明的提法應規定一個最大降溫速率,以“天”或“小時”為時間單位,這才易于人們理解并便于使用。護效果及其關鍵性影響因素的作用機制,為發展高效的鋼筋混凝土保護技術普通粘貼碳纖維布加固混凝土梁承載力計算較為簡単,已經有相應的規范參照。但本試驗當中體外四點錨固碳纖維的預應力加固體系,其極限承載力計算有很大難度,央具錨多點錨固體系為體外預應力體.系,因此CFRP片材變形只能通過構件整體變形來求解,同時本預應力體系不同于傳統的體外預應力體系,在多個錨固點之間的CFRP條帶是不能自由滑動的,也即各段預應力CFRP條帶的變形是不同的,這為加載過程應力増量的理論計算帶來難度。經過多次試驗研究分析,研究者認為體外四點錨固的預f、f力加固體系,屬于多點錨固范時,其優點在于能通過與加固構件的多點接觸有效傳通荷載,増強了體外預應力筋(或CFRP片材)與加固構件混凝土的變形協調性,其相互協調性能低于有粘結預應力混凝土結構,但優于兩點錨固中問設置滑動轉向塊的傳統體外預應力結構。因此,在計算理論尚不成熟的情況下,根據已有的試驗成果,既來用體外多點錨畫的碳纖維片材加固的試驗構件都發生破纖維的拉斷破壞,暫時按經驗取極限承載力狀態下的CFRP條帶應力為規范設計強度值,計算所得極限抗彎承載力與試驗值相差6%,表明極眼應力采用設計強度值是符合試驗規律的,有一定的合理性。當然,考f屋加固混凝土梁的不同破壞模式以及CFRP片材的脆性,其極限強度取值述需進一步研究。,為實現重點工程鋼筋混凝土結構的安全性和長壽命提供理當混凝土保護層較薄且未配置橫向箍筋時,徑向裂縫很容易發展到混凝土表面而形成沿鋼筋方向的裂縫,最終導致混凝土保護層的劈裂破氯離子引起裸鋼筋的腐蝕大約只需要2個干濕循環周期。而對于鍍鋅鋼筋發生腐蝕的時間為8到12個周期,此時應有更多的氯離子積聚到鍍鋅鋼筋/混凝土界面,由此說明,鍍鋅鋼筋比裸鋼筋對氯離子有更強的耐蝕性。而環氧涂層在20個于濕循環周期中對鋼筋仍可提供良好的保護。壞。當混凝土保護層較厚或配置有橫向箍筋時,徑向裂縫的發展受到抑止,混凝土一般不發生劈裂破壞,但隨著滑移的增大,橫肋間的咬合齒混凝土被擠壓破碎或切斷,并與鋼筋一起從混凝土中被拔出,破壞面是以變形鋼筋的外徑為直徑的一個圓柱面,我們稱這種粘結破壞為拔出破壞。論依據和技術支撐。/SPAN>
保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
5、抗開裂
現場使用中因加水量不確定、環境溫度不確定以及養護條件限制等因素裂紋現象。
6、灌9年期銹蝕鋼筋混凝土板的承載力隨銹蝕率增大出現較大的損失,根據試驗數據在現行規范的基礎上提出了適合這一齡期下不同銹蝕鋼筋混凝土板計算公式。對比分析表明,板承載力隨齡期增大而非線性下降。根據規律提出了承載力預目前,補償收縮混凝土的研究和發展逐漸認識到,如果有意識地控制和利用混凝土的自生體積膨脹變形,有可能大大改善某些混凝土的抗裂性。但對于普通水泥混凝土,由于大部分屬于收縮的自生體積變形,數量級較小,一般在計算中可忽略不計。在混凝土中尚有80%的游離水分需要蒸發。多余水分的蒸發會引起混凝土體積的收縮干(縮),這種收縮變形不受約束條件的影響。若有約束,即可引起混凝土的開裂,并隨齡期的增長而發展。測模型,預測未來四年內承載力降低為原承載力的53%、42%、30%、17%。漿料的耐久性強
經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。<通過低周反復荷載作用下粘貼鋼板加固RC梁試驗,初步提出了粘鋼加固梁的抗剪承載力計算公式,及粘鋼法加固施工時的注意事項。/SPAN>
7、早強、高強
2天抗壓強度≥20Mpa;3天抗壓強度≥30Mpa;28天抗壓強度≥65Mpa。
★灌漿料的包裝貯運
1、包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2、灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
3、不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不爆,可按一般貨物運輸
★灌漿料的產品用途:
1、<對碳纖維布應變的分析得出的結論:用有機膠粘貼碳纖維布加固鋼筋混凝土梁可使碳纖維布的強度較充分的發揮,而用無機膠粘貼碳纖維布加固鋼筋混凝在工程施工期間經歷了碧利斯和格美兩次臺風的考驗,邊坡及周邊建筑物、道路地基穩定均未發現異常。實踐證明,本工程采用靜壓管樁加錨管與噴錨網聯合支護技術安全可靠,對周邊環境影mJ4。同時樁基與支護體系平行施工,可以統一安排施工計劃并減少機械二次進場,有效的縮短了工期并降低費用,使建設單位和施工單位都取得了良好的經濟效益和社會效益。對于沿海地區地質條件較差的類似工程有很好的推廣價值。土梁碳纖維布的強度僅能發揮到用有機膠粘貼時強度的一半左右,根據試驗結果,碳纖維布破壞時的應變平均在5000,uv,由于試驗中所使用的碳纖維材料的極限延伸率為1.5%,因此,碳纖維布破壞時的平均應變為{‰。另外,對碳纖維層數的影響分析得出的結論:試驗數據表明用無機膠粘貼碳纖維布加固鋼筋混凝土梁,粘貼一、二、三層碳纖維布時,試驗梁的屈服荷載和極限荷載近似成線性增長。因此,我們在計算三層及三層以下用無機膠粘貼碳纖維布加固鋼筋混凝土梁的抗彎承載力計算中可不考慮碳纖維層數的折減。SPAN style="FONT-FAMILY: 宋體; COLOR: #0000ff; FONT-SIZE: 10.5pt">灌漿料
用于混凝土結構凈漿體的強度總是高于復合物的強度,I組分的膠體強度大于其他所有配比的強度;隨著砂率的增加,膠體的立方體抗壓強度逐漸下降;通過試驗結果表明,在攪拌過程中,過大的砂率會影響拌合物的和易性和流動性。加固和修補。2、灌漿料用于地腳螺栓錨固及鋼筋栽埋。
3、灌漿料用于設備基礎二次灌漿。★灌漿料的施工
第一步:基礎處理
基礎表面應進行鑿毛處理。清潔基礎表面,不得有碎石、浮漿、浮灰、油污和脫模劑等雜物。灌
漿前24小時,基礎表面應充分濕潤,灌漿前1小時,清除積水。
第二步:支摸
1、按灌漿施工圖支設模板。模板與基礎、模板與模板間的接縫處用水泥漿、膠帶等封縫,達到整
體模板不漏水的程度。
2、模板與設備底座四周的水平距離應控制在100mm左右,以利于灌漿施工。
3、模板頂部標高應高出設備底座上表面50mm。
4、灌漿中如出現跑漿現象,應及時處理。
第三步:灌漿料的施工配制
1、一般地,按通用加固型按13-14%的標準加水攪拌,豆石加固型按9-10%的標準加水攪拌。
2、推薦采用機械攪拌方式,攪拌時間一般為1-2分鐘(嚴禁用手電鉆式攪拌器)。采用人工攪拌時,應先 加入2/3的用水量拌和2分鐘,其后加入剩余水量攪拌至均勻。
3、每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
4、現場使用時,嚴禁在HGM灌漿料中摻入任何外加劑、外摻料。
第四步:灌漿施工方法
1、較長設備或軌道基礎,應采用分段施工。
2、幾種常用灌漿方式圖示
3、二次灌漿時,應符合下列要求。
①、當設備基礎灌漿量較大時,豆石加固型灌漿料的攪拌應采用機械攪拌方式,以保證灌漿施工。
②、二次灌漿時,應從一側或相鄰的兩側多點進行灌漿,直 至從另一側溢出為止,以利于灌漿過程中的排氣。不得從四側同時進行灌漿。③、在灌漿過程中嚴禁振搗。必要時可用灌漿助推器沿灌漿層底部推動HGM灌漿料,嚴禁從灌漿層中、上部推動,以確保灌漿層的勻質性。
④、灌漿開始后,必須連續進行,不能間斷。并盡可能縮短灌漿時間。
⑤、當灌漿層厚度超過150mm時,應采用豆石加固型高 強無收縮灌漿料。
⑥、設備基礎灌漿完畢后,應在灌漿后3-6小時沿設備邊緣向外切45度斜角(見下圖)以防止自由端產生裂縫 , ?如無法進行切邊處理,應在灌漿后3-6小時后用抹刀將灌漿層表面壓光。
第五步:養護
1、在設備基礎灌漿完畢后,如有要剔除部分,可在灌漿完畢后3-6小時后,即灌漿層硬化前用抹刀或鐵锨工具輕輕鏟除。2、冬季施工時,養護措施還應符合現行<<鋼筋混凝土工程施工及驗收規范>>(GB50204)的有關規定。
3、不得將正在運轉的機器的震動傳給設備基礎,在二次灌漿后應停機24-36小時,以免損壞未結硬的灌漿層。
4、灌漿完畢后30分鐘內應立即加蓋濕草蓋或巖棉被,并保持濕潤。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。上饒高強無收縮灌漿料廠家|南昌灌漿料價格。