★灌漿料的該方法是將混凝土構件中鋼筋或混凝土進行一些人為的機械處理,用以模擬銹蝕后的鋼筋混凝土構件,以此來研究受損后混凝土構件的力學性能。該方法操作簡單,易于控制,可以定量地分析鋼筋銹蝕率對構件性能的影響。不足之處是,僅僅通過簡單的機械模擬不能真實地反映復雜的實際銹蝕鋼筋混凝土構件性能,得出的結果與實際銹蝕情況勢必會存在一定的差距。特點
抗油滲 在機油中浸泡30天后其強度提高10%以上,成型體、密實、抗滲、適應機座油污環保!
微膨脹 澆注體長期使用無收縮,保證設備與基礎緊密接觸,基礎與基礎之間無收縮,并適當的膨脹壓應力確保設備長期安全運行。
耐侯性好-40℃~600℃長期安全使用
早強高強 澆后1-3天強度高達30Mpa以上,縮短工期。
的耐久性200萬次疲勞試驗,50次凍融環境試驗強度無明顯變化。
低堿耐蝕 嚴格控制原材料堿含量,適用于堿-集料反應有抑制要求的工程。
自流態 現場只需加水攪拌,直接灌入設備基礎,砂漿漿液自拌制完成至壓入孔道的延續時間不宜超過40min,且在使用前和壓注過程中應連續攪拌,對因延遲使用所致流動度降低的水泥漿,不得通過額外加水增加其流動度。自流,施工免振,確保無振動、長距離的灌漿施工。
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,當加入亞硝酸鈉及MCI.A后,均對鋼筋起到了較好的保護作用,7天后鋼筋的腐蝕電流分別為53|IA、63pA,符合標準要求。與亞硝酸鈉作用機理不同的是,加入MCI-A后鋼筋的腐蝕電流并沒有立即下降,而是繼續上升,當到達最大值106IIA時,腐蝕電流才開始出現持續下降趨勢。這與其自然電位的變化趨勢一致。阻銹劑MCI.A的阻銹作用使鋼筋的自然電位、腐蝕電流得以下降,使鋼筋的銹蝕速度下降。至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使C在固化過程中錨固件避免擾動,凝膠后于室溫完全混凝土早齡期彈性模量的發展,受齡期、水泥品種、強度等級、骨料類型、水灰比等多種因素的影響。而早齡期混凝土的強度和彈性模量發展要比28d齡期以后快得多,特別是在混凝土成型養護7d以內發展更為迅速。因此,在對混凝土施工期性能研究中,對混凝土成型及7d齡期以內的強度和彈性模量研究就顯得非常重要。一般情況下水灰比小的混凝土早期強度和彈性模量發展的更快,在1~28d齡期范圍內,隨齡期的增長,混凝土強度和彈性模量的發展是持續穩定的,每天都處于變化發展之中,只是增長的幅度不一樣。固化1-2天。HIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
2.4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗伸縮縫破壞了結構的整體性,對施工、維護和結構抗震都是很不利的。后澆帶是在施工期間保留的臨時性溫度收縮變形縫,保留一段時間后,再進行填充封閉,后澆成連續整體的無伸縮縫結構。它是避免混凝土早期收縮應力按一定比例將主劑和固化劑先后置于容器中,用低速旋轉的方法描拌均勻,根據現場實際氣溫決定用量,并嚴格控制使用時間。本試驗中所用底膠與底膠固化劑的比例為100:12。然后用滾桶刷或毛刷將膠均勻地涂抹于混凝土構件表面,厚度不超過0.4mm,并不得漏刷或有流淌、氣泡,等膠固化后固化時l可視現場氣溫定,以手指觸感干燥為宣,一般不小于2小時),再進行下一道工序。底膠固化后,若表面有凸起部分,用磨光機或砂紙打磨平整。和部分差異沉降的比較有效的方法,和永久性的伸縮縫相比優勢是明顯的,所以現在一般都是利用后澆帶取代伸縮縫。;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)<植筋鋼筋與混凝土基材邊距小于3d時,混凝土基材局部也會發生椎體破壞。/SPAN>
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
在泵送混凝土中,摻入占水泥重量0.25%的木質素鋼筋腐蝕過程是溶液中各種去極化劑在腐蝕電池的明極上被還原的過程。對于金屬腐蝕來說,氫離子和氧分子的明極還原反應是最常見的兩當摻加有MCI-A時,混凝土的流動性有一定的改善,混凝土的流動性及粘聚性有所改善。MCI-A可提高混凝土的含氣量,但提高的幅度不大,MCI.A的縮合物對混凝土的表面張力起到一定調節作用,增大混凝土的穩泡能力。個明極去極化過程,相應發生的金屬腐性分別稱為析氫腐蝕和吸氧腐蝕。當混凝土構件處于強酸或較強酸性環境介質中時,則可能發生析氫腐蝕,此時,由于鋼筋處在混凝土包圍之中,腐蝕反應產生的氫氣很難及時排出,氫氣在鋼筋銹蝕時進入銅筋之中,扱易產生“氫脆''現象。當混凝土構件處于含有溶解氧的中性或堿性環境介質中,由于氫離子濃度很低,則發生吸氧腐蝕。磺酸鈣減水劑,不僅能使混凝土的泵送性能改善,而且可以減少拌合水和水泥用量,從而降低水化熱,延遲了水化熱釋放速度,推遲放熱峰。因此,不但減少了溫度應力,而且使初凝和終凝時間延緩3~8h,降低了大體積混凝土施工中出現冷縫的可能性。 2.4.3.2 將拌和好的GM型灌漿料一混凝土及其結構的耐久性問題為當今土木工程界的熱點問題之一,己引起世界各國的重視。但由于混凝土結構耐久性問題本身的復雜性,目前的研究成果尚遠遠不能滿足實減水劑作為混凝土的第五組分,在混凝土的生產中已經大量使用。隨著減水劑研究的發展,減水劑的種類也日益豐富,從開始的萘磺酸鹽甲醛縮合物、多環芳香烴磺酸鹽甲醛縮合物和三聚氰胺磺酸鹽甲醛縮合物三種發展到目前的磺化聚苯乙烯、馬來磺酸鹽聚氧乙烯酯等多種類型。這些新型減水劑的出現,使得混凝土的工作性能更好,坍落度損失減小。際工程應用的需要。大量工程實例表明,在影響混凝土結構耐久性的諸因素中,鋼筋的銹蝕是導致結構過早破壞、結構失效的主要因素。而混凝土中鋼筋銹蝕的典型現象是,鋼筋銹脹使保護層混凝土發生縱向劈裂裂鑓、保護層脹裂破碎甚至剝落。次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃這些現象在實際工程的施工中是客觀存在的。因此,用有限元分析軟件對預應力連續梁橋進行有限元分析時應該考慮實際工程中的這些因素,以求分析結果能更加準確地反映橋梁的實際受力狀態。板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:為保證對橋梁結構施加足夠的預應力,在碳纖維板上分別設置了電阻應變計及光纖光柵傳感器,如圖2.11所示。電阻應變計用于測定切斷碳纖維板后的由于錨具變形及混凝土彈性變形引起的預應力損失,以確保釋放預應力后足夠的初始拉力作用于T梁結構。光纖光柵用于測定由碳纖維長期徐變、混凝土徐變收縮、化學膠粘劑蠕變引起的長期預應力損失目前我國在大體積混凝土溫控領域的研究還不夠深入和全面,有關的規范條文還不夠完善,很多工程實踐中的問題只能依靠經驗,缺乏理論依據。因此,對于大體積混凝土溫控還有待于進一步深入研究。,以監測預應力碳纖維板加固系統的長期性能。第n天的高度讀數(大體積混凝土開製后,其性能與原狀溫凝_土性能差異很大,尤其是對耐久性(滲透性)的影響更大;混凝滲透反過來又會加速和促使混凝的進一步惡化,嚴重影響其結構的長期安全和耐久運行。裂縫的產生大多在早期,因此,探討製繼產生的原因以防止裂重逢的出現就顯得格外重要。mm);Ho:試件的初始讀數(mm);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值,精確到10-2。
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
<盡管從混凝土誕生以來人們就開始了對混凝土結構耐久性的研究,但長期以來人們對混凝土結構耐久性還是缺少足夠的重視,相關方面研究甚少。直到上個世紀后半葉大量的混凝土結構不斷出現嚴重的耐久性劣化現象,許多國家因此而蒙受巨大的經濟損失,人們因此而越來越關注混凝土結構耐久性的問題。1960年,國際材料與結構試驗研究聯合會(RILEM)成立了“混凝土中鋼筋銹蝕”技術委員會(CRC),總結了當時各國在該方面歷時5年的研究成果,并對以后的研究方向提出了建議。P class=MsoNormal>2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次灌漿,混凝土梁柱影響碳纖維加固效果的因素很多,可以分成兩類:第一類是加固梁本身的性能及原始情況,包括荷載情況、支撐情況、梁的高跨比、剪跨比、混凝土強度、配筋率、配箍率等;第二類是加固材料的性能,包括碳纖維布的層數、彈性模量、極限延伸率以及膠層的剪切強度、厚度等。其中對極限承載力影響較大的是碳纖維布的層數、配筋率、及膠層的剪切強度等。下面主要分析一下碳纖維層數、縱筋配筋率、混凝土強度、梁的高跨比、配箍率等對加固效果的影響。加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料! 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥4何需要膠接的構件在實施膠接前,均需要進行膠接方案的確定。如某構件因強度或其他原因出現裂紋而需要進行膠接加固時,首先應找出裂紋產生的真正原因:是設計時配筋不夠;是施工質量造成,還是因年久失修或鋼筋銹蝕,或 是超負荷使用等。根據其造成強度不夠的原因再進行加固補強方案的設計,設計前要對混凝土標號等進行測試。這項設計應在原來設計的基礎上,考慮當前的使用要求,確定出加固的形式、補配鋼板的截面積、需要增加的抗剪抗彎能力,并最終計算出膠接鋼板的位置及膠接面積。若為柱子的節點連接應設計出膠接接頭形式等。目前雖無標準可作依據,但均有一些暫行技術規范可以參考,膠接方案的設計是一個很重要的環節。只有進行正確的設計并繪制出施工藍圖,才能進行膠接施工。0mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度<當植筋膠實驗構件達到屈服荷載以后,三個植筋錨固深度為10d的構件承載力均迅速下降,但是隨著加載的進行,構件的滯回曲線出現了不同的發展趨勢:(a)無錨固構件的承載力下降速度快,屬于脆性破壞;Co)單錨構件在承載力下降一段后又慢慢恢復,峰值荷載達到了39.1kN,最終破壞。/SPAN>30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
★灌漿料的施工
1對于表面僅有浮銹的鋼筋,當其截面損失率小于1時,鋼筋的應力~應變曲線以及鋼筋的極限強度、屈服強度與母材相同。這種鋼筋對結構性能沒有影響。②對于截面損失率小于5 且均勻銹蝕的弱腐蝕鋼筋,熱軋鋼筋的應力~應變曲線公路舊橋加固、改造維修工程是一項復雜系統的工程,隨著日益發達的科學技術的進步,公路橋梁建設者們對舊橋維修加固的技術也在發生著日新月異變化,不再拘限于傳統的施工工藝,而是采取最先進的材料和技術,特別是碳纖維片粘貼技術的應用,在舊橋加固技術上又向前邁進了一大步,是鋼筋砼結構體外補強的一種新技術。仍具有明顯的屈服點鋼筋的伸長率基本上大于規范最小允許值,鋼筋的極限強度和屈服強度可以與母材相同來考慮,承受荷載的計算則需考慮截面的折減,對結構計算影響不大。.基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模到1984年,57.5萬座鋼筋混凝土橋中一半以上出現鋼筋腐蝕破壞,僅橋面板和支撐結構的腐蝕破壞估計損失1.65—5.oo億美元。同時40%的橋梁承載力不足,必須修復或加固砂漿的抗折強度不僅受到本身性能的影響,同時受到試塊表面狀態影響,也因儀器原因而造成了抗折強度波動性大,沒有明顯規律,此處只以砂漿的抗壓強度作為砂漿耐酸性能的表征參數。表5-4為三種水泥砂漿在pH=1的強酸性環境下抗壓強度測試值,由于砂漿表面漿體脫落而造成測試面不平整,造成不可避免的誤差,所以在試驗過程中需要采取措施盡量減小強度值的離散性。處理,當年的修復費為54億美元。英國英格蘭島中部環形線的快車道上有11座混凝上高架橋,建造費為2800萬英鎊,因鋼筋受到腐蝕,建成后兩年混凝土中便出現大量沿鋼筋方向的裂縫,1974到1989年15年問修補費高達4500萬英可以看出,隨著荷載的增加,X型描的變是迅速述生表-發展的,也就是根據上述特點,可以認為這類結構所承受的溫差和收縮,主要是均勻溫差和均勻收縮,因而外約束應力是主要的。經驗表明,要防止大體積混凝土結構中出現危害性的製要進,多更精心設計、精心施工,才能使製重避得到控制。所以說,溫度應力分析、溫度控制和防止製生達的措施,是大體積混凝土設計與施工中十分重要的課題。說X型f舗通的作.在充分發揮身的強度,型描.碳纖維的應変-去口在荷載到達-定水平時投有太大發展。因此,x型描的錨田發更多碳重T一維描本身的強度來抵,縱向職要T維的拉力,井將力傳遞到更大的范事,起到置制剎離的作用。推梁J産部股的本-占結剪應力來抵抗縱向碳2千重性的拉力,u型続本身投能發揮太大作用,也不能將拉力1t遞到梁側面,因此.與x型続相比抗幸l」高的效果較為過色。鎊,為工程造價的1.6倍,以后的15年維修經費估計為1.2億英鎊,接近造價的6倍。由此可見,鋼筋的腐蝕是鋼筋混凝土工程中出現質量問題的主要原因之一。劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進碳纖維粘結材料:粘結材料的性能是保證碳纖維布與混凝土共同工作的關鍵,也是兩者之間傳力途徑中的薄弱環節,所以,粘結材料應有足夠的剛度與強度,保證碳纖維與砼間剪力的傳遞,同時又應有足夠的韌性,不會因為砼開裂導致脆性粘貼破壞。行灌漿,以確保漿料能充分填充各個角落。
3. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
<利用TR300組糙度測量儀對席蝕后的鋼板表面輪廓進行測量,通過計算機記錄探針在試件取樣長度正反兩面劃過的痕跡,即為鋼板表面的二維輪廟軌跡。對于IFM測量系統,類似于輪廓儀的掃描原理,用戶可在彩色光學圖像上自定義若干條掃描軌跡,通過對2D真彩圖的掃描得到該掃描區域上的輪廓軌跡。為提高測量精度,本實驗定又了50微米的掃描寬度,鼠標如同輪廓儀的探針a由顏色高度條可知,表面的最高點與最低點的大概分布位置,沿鋼板短邊方向,通過鼠標在圖像中抬取任意兩點連線取樣,取樣中保證兩點掃過的軌跡包含整個表面的最高點和最低點,由鼠標抬取各點坐標,通過計算機演取該掃描線上各點的Z值,并將其轉化為對應各點的實際高度値,從而得到Z高度變化曲線,即為表面所選部分銹坑的線性高度圖,從而形象的呈現出樣品表面的徴觀幾何形狀。P class=MsoNormal> 4. 灌漿料的攪拌
按產品合格證上推薦的水料比確定加水量,拌和用水應采用飲用水,水溫以5~40℃為宜,可采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
2).灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
3).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
4).每次灌漿層厚度不宜超過100mm。
5).較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
6).灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
7)對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
8).設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
9).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
10)模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
11)灌漿中如出現跑漿現象,應及時處理。
12)當設備基礎灌漿量較大時,應采用機械攪拌方式,以保證灌漿施工。
6、養護
1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的應用范圍
(1)需高精度安裝的設備設備基礎的一次灌漿和二次灌漿。
(2)鋼筋栽埋及建筑、巖土工程的錨桿錨固。
(3)建筑加固改造工程,梁柱接頭、變形縫、施工縫澆筑。
(4)道路、橋梁、隧道、機場等工程搶修施工使用。
(5) 鐵路軌枕的錨固施工。
(6) 柱濕包鋼加固用于灌注角鋼和柱間隙縫。
★參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西鷹潭早強灌漿料批發|南昌灌漿料廠家。