★灌漿料的特點
抗油滲 在機油中浸泡30天后其強度提高10%以上,成型體、密實、抗滲、適應機座油污環保!
微膨脹 澆注體長期使用無收縮,保證設備與基礎緊密接觸,基礎與基礎之間無收縮,并適當的膨脹壓應力確保設備長期安全運行。
耐侯性好-40℃~600℃長期安全使用
早強高強 澆后1-3天強度高達30Mpa以上,縮短工期。
的耐久性200萬次疲勞試驗,50次凍融環境試驗強度無明顯變化。
低現澆或預制梁板中后張法預應力管道壓漿不密實是橋梁建設的質量通病之一,本文通過對這一質量病害分析指出,過程預防重于事后處理。在大跨徑橋梁建設中推薦使用塑料波紋管及真空壓漿工藝進行灌漿施工。堿耐蝕 嚴格控制原材料堿含量,適用于堿-集料反應有抑制要求的工程。
自流態 現場只需加水攪拌,直接灌入在加固改造中,新老材料的共同工作性能一直是一個重要的方向,受到廣大工程界的關注。l991年美國砼學會(ACI)曾在香港召開過專門的國際會議討論舊有建筑物的檢測,維修和加在混凝土配合比設計中,最重要的是保證最大水灰比與最小水泥用量。水灰比不僅與強度有關,而且與混凝土耐久性有直接的關系。控制水灰比是為了減少由于多余水分蒸發而形成的孔隙,減小混凝土的滲透性,增強其抗凍性。合理使用礦物摻合料,據相關研列201,用30%的粉煤灰替代水泥可使鋼筋抵抗銹蝕的能力提高2~3倍。用50%的礦粉替代水泥可使鋼筋開始銹蝕的時間增加3.1@-"3.82斜2¨。且摻加粉煤灰與礦粉均可提高混凝土抗硫酸鹽等侵蝕能力。固,新舊混凝土粘結性能是討論內容之一;1993年4月瑞士舉行了新老混凝土粘結的專題學術會議;日本1995年阪神大地震后,建設省專門組織了有關建筑物修復加固的研究,新老混凝土結合也是研究內容之一。國內外已經做了很多關于新老混凝土粘結方面的研究工作,例如混凝土強度、粗糙度和界面劑等因素對粘結性能的影響,一些粘結機理及粘結斷裂理論的研究。<對于復合涂層鋼筋,在環氧涂層劃傷部位,鍍鋅層表面發生不完全鈍化,對鋼筋基體提供了良好的阻擋層作用。劃傷的環氧涂層鋼筋,其劃痕下的鋼筋在5到6個月之間開始發生腐蝕,延緩了鋼筋的腐蝕反應,6個月后處于中等速度的腐蝕。不同鋼筋樣品在實海環境中的腐蝕速度均比在實驗室干濕循環環境中預應力碳纖維加固橋梁技術這一FRP土木工程結構應用領域的先進技術,進行了較為系統的工程應用,結構力學性能試驗研究,長期性能監測等方面的工作。已經獲得的研究結果表明:預應力碳纖維加固技術可以顯著提高橋梁結構的承載能力,增大其剛度,改善其內力分布,從而有效提升橋梁的運營能力;同時本文的工作也表明這一加固技術的施工工法及配套設備具有較強的可操作性,正在轉化成為成熟實用的技術。本文進行的布里淵分布式光纖傳感技術應用,將為深入研究預應力碳纖維加固橋梁的長期性能提供強有力的技術支持,也將為這一最先進測試傳感技術在公路交通領域的應用提供寶貴經驗。小,這主要是由于混凝土樣品在實驗室干濕交替環境中比在實海環境中干燥的更充分,促進了腐蝕性鹽類在混凝土中的積累。/STRONG>設備基礎,砂漿自流,施工免振,確保無振動、長距離的灌漿施工。<破開混凝土,對鋼筋樣品表面進行觀察,發現在劃痕下的鋼筋基體發生了腐蝕,但是腐蝕不是很嚴重,而且劃痕周圍的環氧涂層并沒有從鋼筋基體上剝離,電化學阻抗行為依然由于亞硝酸鹽的早強、降低后期強度作用,以及人們對環保的要求,人們轉而研究有機阻銹劑。但是對一些新型有機阻銹劑,由于專利原由,對對梁的抗裂剛度進行補強時,梁側粘鋼比梁底粘鋼更有效,應優先采用梁側粘鋼。在進行粘鋼加固RC梁的承載力計算時.必須考慮承載力折減系數盧,否則有高估粘鋼加固RC梁承載力的危險。其組分不是很清楚,因此對它們的分析、研究不太透徹。而對它們的研究使用的前提也多是在混凝土保護層完好(依然保持高堿性)的情況下。通常在混凝土孔隙液的高堿度(一般pH值大于12.6)條件下,由于OH一實際上就是一種陽極阻銹劑,在鋼筋表面能輔助形成較為穩定的保護對于受彎構件其正截面裂縫寬度達0.2mm左右的構件,完全卸荷枯鋼的試件,試驗中發生枯鋼破壞,說明其加荷過程中混凝土和鋼筋的受力已不同于鋼筋混疑土構件的受力狀態。因此在使用中不宜采用完全卸荷粘鋼加固以提高其正截而承載力,也應盡量避免大量卸荷枯鋼加固以提高其正截面承載力。對其受力狀態需進一步研究。膜。摻入阻銹劑后,由于OH一和阻銹劑的協同作用,一般情況下阻銹劑都有很好的效果。但是失去高堿性的保護條件后,也即保護層完全碳化后,阻銹劑的阻銹能力非常值得研究。可用的等效電路描述,只是在風。后面串連-了WarburgPlt抗在混凝土結構的許多領域,非線性有限元的分析取得了豐碩的成果,而植筋系統的有限元分析在國內外還很少,選擇真實合理的植筋膠與鋼筋的粘結滑移本構模型是植筋結構有限元分析中的關鍵問題,進行植筋鋼筋混凝土錨固節點的有限元分析有助于全面了解新增構件的受力性能。。其他各元目前的研究以證明,在荷載作用以前,混凝土內部微裂縫主要是由于水泥水化、水泥石的干縮應變引起的。干縮應變不僅在粗集料與砂漿的界面上產生裂縫,有時也會是砂漿內部出現裂縫。荷載作用后,這些內部微裂縫就開始延伸與發展,并連通成大裂縫最后破壞,呻3這就是混凝土的破壞機理。件的物理意義相同。/P>
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐采用短距離釋放應力的大面積混凝土地面結構無縫施工技術是在傳統的設置后澆帶和伸縮縫施工技術上發展起來的新型施工技術,以其縮短建設工期、提高結構使用性能等優越性在大型公共建筑、工業廠房和商業中心等領域正得到越來越多的應用。對這類突破規范的施工技術,在我國目前還沒有一種簡潔有效的設計和較為完善的裂縫控制措施的背景下,對其研究具有重大的現實意義。<傳統的吸附理論認為粘結劑與被粘物在界面層上的相互吸附力是形成次價力和主價力的前提,而機械結合理論認為粘結劑的固化是產生機械咬合力的前提,在植筋理論中運用的粘結理論主要就是引用吸附理論和機械結合理論。/STRONG>圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
2.4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿推廣應用高強鋼筋除了可以獲得明顯的直接經濟效益外,還可以獲得巨大的間接經濟效益。高強材料的應用,可以解決目前建筑該方法是將混凝土構件中鋼筋或混凝土進行一些人為的機械處理,用以模擬銹蝕后的鋼筋混凝土構件,以此來研究受損后混凝土構件的力學性能。該方法操作簡單,易于控制,可以定量地分析鋼筋銹蝕率對構件性能的影響。不足之處是,僅僅通過簡單的機械模擬不能真實地反映復雜的實際銹蝕鋼筋混凝土構件性能,得出的結果與實際銹蝕情況勢必會存在一定的差距。結構中肥梁胖柱的問題,不僅能增加建筑使用面積,也可以使結構設計更加靈活,提高建筑的使用功能。目前,我國每年完成建筑使用面積約18億平方米,如果其中的30%左右,即5.4億平方米是采用高強建筑材料,僅以增加1%~1.5%的使用面積計算,可以增加建筑面積540~810萬平方米。比照全國平均建筑造價1500元/米2計算,每年可產生經濟效益約81~121.5億元;如果比照2004年第一季度全國商品房平均銷售價格2670元/米2計算,每年可以產生經濟效益144.18~216.27億元。同時,采用高強鋼筋還可以提高施工作業效率,提高建筑質量,延長使用年限,減少維護費用。料強度檢驗應采用40×40×160 mm試模。
2.4.2.2由于劃分標準的不同,橋梁結構裂縫的分類方法有多種。根據裂縫的出現時間,可以分為施工階段的裂縫和使用階段的裂縫;根據裂縫的性質,可以分為結構型承重構件的植筋錨固設計應在計算和構造上防止混凝土發生劈裂破壞。植筋按僅承受軸向力考慮,且僅允許按充分利用鋼材強度的計算模式進行設計。植筋膠粘劑的粘結強度設計值應按規定值采用。地震區的承重結構,其錨固深度設計值應乘以考慮位移延性要求的修正系數。裂縫和材料型裂縫;根據裂縫產生的部位,可以分為腹板裂縫、頂板裂縫和底板裂縫;根據裂縫產生外因,可以分為荷載型裂縫和溫度型裂縫;還可以根據裂縫產生的力學破壞形式,分為彎曲裂縫、剪切裂縫和扭曲裂縫等等。每一種分類方法都有不同的出發點,而實際裂縫產生后,往往可以根據不同的劃分原則將其列入不同的裂縫類型,F有研究成果表明,混凝土橋梁的開裂成因,除了設計上的缺陷、施工工藝不合理、后期營運管理不力等人為因素外,還與混凝土自身的收縮徐變特性,溫度荷載和預應力損失有著密切的聯系。 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊國內外大量的試驗結果表明,CFRP布加固锏筋混凝土梁的剛度變化與普通鋼筋混凝土梁的剛度變化趙勢是一致的,都與混凝土中的製縫的出現和發展有關。從整體上看,CFRP布加固梁的截面剛度比普通锏筋混凝土架的截面剛度大,即撓度比相應的普通鋼筋混凝土梁的撓度要小。緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×<隨著水泥水化反應的結束及混凝土的不斷散熱,大體積混凝土由升溫階段過渡到降溫階段。由于混凝土內部熱量是通過表面向外散發,降溫階段混凝土中心部分與表面部分的冷卻程度不同,在混凝土內部產生較大的內約束,使收縮的混凝土產生拉應力,隨著混凝土的齡期增長,抗拉強度Rf(t)増大,彈性模量E(t)增高,徐變影響減小。因此降溫收縮產生的拉應力o(t)較大,易在混凝土中心部位形成較高拉應力區,若此時的混凝土拉應力o(t)大于混凝土此齡期的抗拉強度Rf(t),則大體積混凝土產生貫穿裂縫。/SPAN>160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
2.4.3.2 將拌和好的GM型灌漿料一次裝入試模,拌和物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常注水,以保持潮濕狀態。每日測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n天的高度讀數(mm);Ho:試件的初始讀數(mm);<化學灌漿處理技術,作為開裂后的處理技術,己逐漸什么是大體積混凝土,國內外有許多種不同的定義:日本建筑學會標準(JASS5)的定義是:結構斷面最小寸在80cm以上;水化熱引起的混凝土內最高溫度與外界氣溫之差,預計超過25度的混凝土,稱為大體積混凝土。美同混凝土協會(Ac)規定的定義是:任何就地澆筑的混凝土其寸之大必須釆取描施解決水化熱及隨之引起的體積變形問題,以最大展度地空制減少開裂,就為大體積混凝土。發展成為--f-j新興的學科。過去,防滲堵漏被單純地看作是質量事故處理和工程上的“修修補補”,認為工藝簡單、操作容易。隨著近代建設規模的發展,國際上如日本、美國、法國、英國、前蘇聯等國家在化學灌漿技術方面發展相當迅速,其材料不下數百種,工藝及機具都日趨現代化。我國近年來也有新發展,各工業部門都有專門。的研究開發,特別在發展經濟高效的堵水材料方面,己取得不少經驗,成通過對暴露環境銹蝕鋼筋和電化學腐蝕鋼筋進行試驗研究,從微觀角度銹蝕鋼筋其內部金相組織沒有明顯變化;鋼筋的銹蝕程度對其強度無明顯影響,銹蝕鋼筋的剩余承載能力主要取決于其剩余的有效面積。對現場取回的鋼筋的力學性能進行試驗研究,提出了鋼筋銹蝕的三維模型,并提出了銹蝕率的測定方法。并對處于海洋環境下的75根I、II銹蝕鋼筋進行拉伸試驗,考慮了由于銹坑引起底應力集中對強度的影響。討論了屈服強度、極限強度、極限伸長率和破壞形式與重量銹蝕率的關系,并比較了海洋環境下和大氣環境下這種關系的異同。由于目前的研究還沒有形成統一的結論,海洋環境現場替換構件中的銹蝕鋼筋的性能更是如此,鑒于此,本文對海洋環境下銹蝕鋼筋的力學性能開展了研究。功解決了一大批工程的防滲堵漏問題。裂縫的修補和處理問題,不僅是在工程施工完出現了裂縫后,再采取措施的問題,而且在設計過程中就可考慮如何對待可能出現的裂縫問題。即在設計時可否預先考慮裂縫部位,使該處構造更加薄弱不(是構造加強),如在結構的某一截面中,預埋橡皮囊,在初凝時抽出以減薄結構厚度,形成薄弱環節,讓裂縫出現在該位置,類似于施工期間的“后澆縫”,便于日后化灌處理。以該方法取消伸縮縫,是否可以認為是一種科學的“預開裂”設計思想。實質上,“后澆縫”的設計就是這樣一種思想的體現,稱作“先放后抗”的施工方法。SPAN style="FONT-FAMILY: Tahoma">H:試件高度(H=100mm典型的陽極型阻銹化學物質有鉻酸鹽、亞硝酸鹽、鉬酸鹽等;陰極型,通過吸附或成膜,能夠阻止或減緩陽極過程的物質。如鋅酸鹽、某些磷酸鹽以及一些有機化合物等。這類物質雖然沒有“危險性”,但單獨使用時,其效能不如陽極型明顯:混合型,將陰極型、陽極型、提高電阻型、降低氧的作用等的多種物質合理配搭而成的阻銹劑。如冶金建筑研究總院研制的砌系列即屬于綜合性、混合型鋼筋阻銹劑。);試驗結果取一組三個試件的算術平均值,精確到10-2。
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm設備二次用于混凝土裂縫的非破損檢測方法有:超聲法、射線法。射線法因穿透能力有限、設備昂貴需要解決操作人員的人體防護等問題,使用較少。目前使用最普遍、最有效的方法是超聲法。它具有無損于材料的組織結構和結構的使用功能,測試簡便快速,測距長,費用低可直接在混凝土構件上進行重復檢測檢驗等優點,這種方法適用于任何形式的混凝土構件內部或淺層的各種裂縫缺陷檢測。灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料! 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥40mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長我國粘鋼加固技術的研究與應用歷史不長。最初是在1971年,遼陽石油化纖廠應用法國西卡杜爾1號膠對設計錯誤的鋼筋混凝土梁進行粘鋼加固補強。從此以后,隨著中科院大連物化所和遼寧建筑科學研究所共同研制的JGX-III型建筑結構膠的成功,粘鋼加固構件性能的研究與應用在我國迅速發展起來,己成為建筑行業中一門重要的工程技術。在標準化方面美國已制定了建筑結構膠粘劑質量標準,日本己有建筑膠粘劑質量標準,我國也己將此法收入《混凝土結構加固技術規范》(cEcs25:90》中。這對粘鋼加周法在我國推廣應用起到重大作用。期處于高溫輻射溫度500℃環境,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
★灌漿料的施工
1.基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
3. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
4. 灌漿料的攪拌
按產品合格證上推薦的水料比確定加水量,拌和用水應采用飲用水,水溫以5~40℃為宜,可化學植筋即為種植錨固筋技術,系以化學膠粘劑(錨固膠)通過固化作用,將帶肋鋼筋固定于砼基材錨孔(鉆孔)中的一種后錨固生根技術。 在歐、美及日本等國應用已相當普遍,它不僅在舊房改造、結構加固等既有工程應用,也是新建工程中一種不可缺少的新型枝術。采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
2).灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
3).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
4).每次灌漿層厚度不宜超過100mm。
5).較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
6).灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
7)對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
8).設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
9).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
10)模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
11)灌漿中如出現跑漿現象,應及時處理。
12)當設備基礎灌漿量較大時,應采用機械攪拌方式,以保證灌漿施工。
6、養護
1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的應用范圍
(1)需高精度安裝的設備設備基礎的一次灌漿和二次灌漿。
(2)鋼筋栽埋及建筑、巖土工程的錨桿錨固。
(3)建筑加固改造工程,梁柱接頭、變形縫、施工縫澆筑。
(4)道路、橋梁、隧道、機場等工程搶修施工使用。
(5) 鐵路軌枕的錨固施工。
(6) 柱濕包鋼加固用于灌注角鋼和柱間隙縫。
★參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。吉安灌漿料供應商|江西灌漿料公司。