★灌漿料的用途
(1)、混凝土結構加固和修補:
1.使用高強無收縮灌漿料進行混凝土梁,板,栓等構件的截面加大加固處理。
2.使用CGM高強無收縮灌漿料進行混凝土孔洞修補。
3.后張預應力混凝土結構管道灌漿及封錨。
4、使用CGM高強無收縮灌漿料進行混凝土路面的修補。
(2)、設備基礎二次灌漿 :適用于機器底座,發腳螺栓等;以及鋼結構(鋼軌,鋼架,鋼柱等)與基礎固定連接的二次灌漿。
(3)、地腳螺栓錨固及鋼筋栽埋 :
地鐵,隧道,地下等工程逆打法施工縫的嵌固。
2.建筑物的橋梁,板柱基礎,地坪和道路的補強。
3. 可進行地腳螺栓和螺栓和Ferry在1980年進行的纖維材料的徐變試驗中得到了纖維復合材料在單向應力狀態下的典型徐變.。由于CFI沖存在徐變現象,在CFl沖張拉后,CF目前粘貼碳纖維板的商業用化學膠粘劑均為常溫固化類型。金剛頭橋加固過程中有一段時間氣溫降至5攝氏度以下,在此溫度范圍內膠粘劑無法正常固化,其最終強度將低于設計強度。為消除低溫的影響,保證膠粘劑達到設計強度,采用對碳纖維板通入低壓電流(80伏特),使其升溫,并在膠粘劑中埋設溫度傳感器控制碳纖維板通電時間,從而控制膠粘劑溫度穩定在18攝氏度左右,使膠粘劑可以在常溫下固化。RP會發生應力松弛,從而影響預應力加固的效果。鋼筋的錮固及結構補強。
BR高強無收縮灌漿料性能特點,初始流動度大于300mm,30min后保留值為260mm,一天強度大于20Mpa,三天強度大于40Mpa,28天強度大于60Mpa.
★灌漿料的八大特點
1、微膨脹性:保證設備與基礎之間緊密接觸, 二次灌漿后無收縮。
2、灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
3、抗離析性能:高強無收縮灌漿料克服了現場使用中因加水量偏多所導致的離析現象。
4、綠色環保:不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不 爆,可按一般貨物運輸!
現階段,我國正在從事著世界所矚目的大規模基本建設,而我國的財力有限,資源并不豐富,因此戰略上要植筋設計一般原則:設計目的是保證鋼筋延性破壞,而避免混凝土(受壓或受拉狀態)脆性破壞或劈裂破壞。高瞻遠矚,有效地利用資金,節約能源。既要科學地設計出安全、適用、耐久的新建工項目振搗工藝:即是澆灌后的混凝土,在抓動界限以前,給予二次振搗,能排除混凝土因泌水在粗骨料、水平鋼筋下部生成的水分和孔隙,提高混凝土與鋼筋的握裹力,防止因混凝土沉落而出現的裂縫,以減小內部微裂,增加混凝土密實度,從而可使混凝土抗壓對后張法預應力混凝土構件的耐久性而言,壓漿飽滿率高的孑L道自然更為有利。因此,預應力孔道壓漿的施工還是需要嚴格的監控,以保證質量。按照《公路橋涵施工技術規范》(JTJ。埃矗薄玻埃埃埃┮螅⒏鶕敬握{查的結果,為保證孑L道壓漿的飽滿率,在孔道壓漿施工時,有條件的情況下,可以根據現場試驗,對一定長度、曲率和直徑的孑L道所要求的漿體的稠度、體積、穩壓強度和壓漿所需時間等指標進行量化,按量化指標進行壓漿施工。強度提高10~20%左右,結合結構物的大小、鋼筋的疏密、混凝土供應條件等具體情況,混凝土澆筑可采用全面分層澆筑和分段分層澆筑及斜面分層澆筑三種。,還要充分地、合理地安全地延續利用現有房屋資源和工程設施。因此,加強混凝土結構耐久性研究,提高設計質量,延長結構使用壽命,是一個很重要的現實課題和任務。
5、灌漿料的早強、高強:1-3天抗走行軌電阻較大時,回流電流在其上流過時產生的電壓降也大,使鋼軌對地的電位差也增大,從而增加了泄漏的雜散電流,為此必須設法降低走行軌的電阻。為降低走行軌電阻值,減少雜散電流腐蝕,在防護設計中選用電阻率低的材料,增大鋼軌橫截面積,將短鋼軌焊接成長鋼軌,其接頭之間的電阻值應低于長為5m的回流軌的電阻值。美國波特蘭輕軌系統采取的辦法是使用規格為54姆/聊的工字鋼軌,從而增大了其橫截面積,而且使用了連續焊接的鋼軌,從根本上消除了鋼軌接頭引起的縱向高電阻率。壓強度30-50Mpa以上。
6、可冬季施工:允許在-10℃氣溫下進行室外施工。
7、灌漿料的抗開裂能力:現場使用中因加水量不確定、混凝土材料組成設計及其在酸性水腐蝕下長期物理力學性能變化規律的試驗研究。研究了水泥品種、骨料巖性與水膠比,礦物摻合料種類與摻量、外加劑組分等因素,對混凝土在酸性水作用下的長期物理力學性能的的劣化規律。采用高抗硫酸鹽硅酸鹽水泥,摻入20-,50%的I級粉煤灰或50%以上的¥95級礦渣粉,輔助添加適量的憎水劑,提高混凝土的強度等級,均能不同程度改善混凝土的耐酸性水性能。在酸性水(pH≥2)情況下,集料的巖性對混凝土的耐酸性能影響甚微。環境溫度不確定以及養護條件限制等因素裂紋現象。
8、耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
★灌漿料灌漿的準備<建筑結構膠配制好后,用抹刀同時涂抹在已處理好的混凝土表面和鋼板貼合面,為使膠能充對被粘混凝土表面與植筋部位畫線定位被粘混凝土表面和鋼板表面處理對需植筋混凝土與鋼板部位鉆孔,并對孔壁與植入鋼筋表面處理需卸載加固的構件進行卸載結構膠配制涂膠粘貼固定加壓植筋固化卸去固定與加壓裝置自檢修補表面防護分浸潤、滲透、擴散、粘附于結合面,宜先用少量膠于結合面來回刮抹數遍,再涂抹至所需厚度(1~3mm),中間厚邊緣薄,然后將鋼板貼于預定位置。鋼板粘貼后,用手錘沿粘貼面輕輕敲擊鋼板,如無空洞聲,表示已粘貼密實,否則應剝下鋼板,補膠,重新粘貼。/o:p>
1、檢查管道出氣孔,有凝義時,選擇有代表性的管道中進行灌漿試驗。
2、灌漿設備、抽真空設備,灌漿泵的壓力:0.4~0.7Mpa、真空泵的真空壓力:—0.1Mpa.
3、采用鼓鳳或按批準的規大面積混凝土溫度裂縫的控制是一個復雜的問題,影響因素較多。水泥水化熱是大面積混凝配筋能否控制或者延遲裂縫的產生曾經是一個比較有爭議的問題。一種觀點認為,配筋對混凝土的極限拉伸沒有影響,反而加大了混凝土的自約束應力;另一種觀點則認為,配筋可以提高混凝土的極限拉伸,在配筋率較低的情況下,配筋引起的自約束應力是很小的,可以忽略不計。所以,問題的關鍵是,配筋能否提高混凝土的極限拉伸;另一方面是配筋是否會引起一個過大的自約束應力,從而導致裂縫的過早出現。土生產溫度裂縫的主要因素,外界氣溫變化的影響、約束條件與溫度裂縫的關系、混凝土的收縮變形等均是大面積溫度裂縫產生的重要因素。定方法進行管道清理,將灌道中的水、冰和雜物清理干凈。
★灌漿料的操作
1、灌漿完成后,應防止漿體從管道流失。
2、灌漿必須從最低處或從最低的鋼絞線開始,以恒定的速度連續進行灌漿,灌滿為止,在波紋管中應適當放慢灌漿速度。
封錨
1、對需要封錨的錨具,在管道灌漿完畢后先將錨具周圍沖洗干凈并對梁端混凝土進行鑿后設置鋼筋網,在錨頭外加裝錨罩,用灌漿材料將錨頭封死,最后在封錨的直接應力裂縫是指外荷載引起的直接應力產生的裂縫。直接應力裂縫產生的對于已有一定損傷(如製縫)的既有結構而言,外貼FRP不能解決已有損傷的恢復問題,其原因在于普通粘貼FRP片材加固是一種被動加固方式;(普通外貼FRP加固法對改善使用階段性能作用有限。原因有如下。設計計算階段結構內力分析的基本假定與結構實際受力研究碳化對襯砌結構鋼筋的銹蝕機理,對影響碳化重要因素進行了分析,得出:水泥用量與碳化深度成線性關系,隨水泥用量的增大碳化深度而減少;當相對濕度為53%左右時,混凝土碳化深度速度最快;混凝土碳化深度與抗壓強度平方根的倒數成正比。情況不符,如橋梁計算時采用的平面桿系有限大體積混凝土在施工階段,外界氣溫的變化影響是顯而易見的,因為外界氣溫愈高;炷恋、澆筑溫度也愈高;而外界溫度下降,又増加混凝土的降溫幅度,特別是氣溫聚降,會大大增加外層混凝士與內部混凝土的溫度梯度,這對大體積混凝土是極為不利的。元分析程序,將空間結構體系假定為平面問題,其空間應力效應沒有體現,沒有考慮箱形薄壁結構的剪力滯效應、翹曲與畸變效應。結構設計時荷載少算或漏算,不考慮施工的可能性,設計斷面不足,鋼筋設置偏少或布置錯誤,結構剛度不足,構造處理不當,設計圖紙交代不清等。又如某特大跨徑的預應力混凝土橋梁設計中,由于漏掉了斜截面的荷載驗算,致使該截面的剪應力超過了規范規定的容許值,結果就在該截面前后的梁段內出現了450的斜裂縫,在148條腹板裂縫中有49條內外貫通。灌漿材料外涂刷防水涂層。
2、當漿體硬化時,所有開孔,灌漿管和氣孔均要緊密封口以防止水有有害物的侵入;
注:1、灌漿層厚度δ≤150mm時,選用CGM-1(CGM-380)或CGM-2(CGM-340);灌漿層厚30mm<δ<無機類植筋粘結劑,為充分發揮植筋鋼筋強度,使極限荷載超過鋼筋屈服荷載,通過一系列試驗及理論分析,建議植筋深度>_15d,即合理的植筋長度。SPAN style="FONT-FAMILY: Tahoma"><150mm時,選用CGM-2(CGM-340)或CGM-3(CGM-300) ;灌漿層厚度δ≥30mm時,選用CGM-3(CGM-300)或CGM-4(CGM-300)型;路面快速搶修,選用CGM-4(根據試驗結果,可以認為15d的錨固長度滿足抗震要求。試驗研究結果表明:鋼筋植筋深度過小時,錨固破壞屬于脆性破壞。工程中應該杜絕出現;而當植筋深度滿足一定錨固長度時,錨固破壞屬于延性破壞,在試件破壞時,仍具有變形能力,破壞有預兆,可以用在工程中。CGM-270)型。
2、抗壓強度按:《GB177-85水泥膠水泥漿中的氫氧化鈣與孔道中的二氧化碳和其他酸性氣體發生化學反應.混凝土碳化后混凝土的堿性降低,鋼筋表面的鈍化膜逐漸被破壞.在波紋管不密實有水分和其他有害介質侵入的情況下,預應力筋就會發生銹蝕。砂強度試驗方法》;膨脹率按:《GB119-88混凝土外加劑應用技術規范》。
★灌漿料的包裝貯運
<王軍強(2003年)從己使用20多年的鋼筋混凝土構件中取出133根不同銹蝕程度的鋼筋作為試件,研究了大氣環境下因混凝土碳化引起鋼筋銹蝕時銹蝕鋼筋力學性能的退化特征,并給出了銹蝕鋼筋力學性能退化與鋼筋銹蝕率的基本關系。P class=MsoNormal>1.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2.保質期為6個月,超出鋼筋銹蝕的直接結果是鋼筋的截面面積減小,不均勻銹蝕導致鋼筋表面凹凸不平,產生應力集中的現象,使鋼筋的力學性能發生退化,強度降低、脆性增大、延性降低,結構承載力下降。保質期應復檢合格后方可使用 。
★灌漿料的配制:
1、CGM灌漿料拌和時,加水量應按隨貨提供的產品合格證上的推薦用水量加入,攪拌均勻即可使用。對于地腳螺栓錨固和栽埋鋼筋,用水量可根據工程實際情況適當減少。拌和用水應采用飲用水,使其它水源時,應符合現行《混凝土拌和用水標準》(JGJ63)<混凝土中鋼筋的電流噪音對應的能量分布圖(EDPs)隨循環周期變化所示,由此可清晰地分辨三個腐蝕階段。每一周期得到的電流噪音被分解為不同時間尺度的小波系數。電流噪音分解得到的小波系數對應的能量大致按西一s8的順序增加。其中平滑系數J8在總信號中占優勢,它的相對比重隨循環周期增加而增加。平滑系數J8代表整體信號中最緩慢的過程,可被認為是直流漂移的趨勢。平滑系數S8的出現可能是由混凝土體系的復雜性引起的。平滑系數鼬占總信號的比重太大而掩蓋了細節系數樁總信號中所占的貢獻。因此,從總能量中去除平滑系數翮所占貢獻后重新作圖得到的EDP。SPAN style="FONT-FAMILY: 宋體">的規定。
2、 CGM灌漿料的拌和可采用機械攪拌或人工攪拌。 推薦采用機械攪拌方式,攪拌時間一般 為1-2分鐘(嚴禁用手電鉆式攪拌器)。采用人工攪拌時,應先加入2/3的用水量拌和<混凝土的收縮值和極限拉伸值,除與水妮用量、集料品種和級配、水灰比、集料含、垣量等因素有關外,述與施工工藝和施工質量密切相關。因此,通過改書混凝土的配合比和施工工藝,可以在一定程度上減少混凝土的收結和提高混凝土的極限拉仲值,這對防止產生溫度裂縫也可起到一定的作用。SPAN style="FONT-FAMILY: Tahoma">2分鐘,其后加 入;炷两Y構中的預應力鋼筋完全有可能滿足上述三個條件,因此也就存在著發生應H.T.Caot431等研究了不同pH值的5%硫酸鈉溶液中,不同礦物組成水泥的砂漿性能變化。結果顯示,在不控制溶液pH值變化時,低C3A,C3S含量的水泥具有較好的耐硫酸鹽性能。在其他情況下,有相同的規律。在pH=3,7和不控制硫酸鈉溶液pH值的情況下,摻入20%和40%的粉煤灰能夠提高砂漿耐久性能。而礦粉摻量為40%、60%時,沒有改善砂漿的硫酸鹽性能,反而加劇了砂漿性能的劣化,摻入80%礦粉代替水泥時,能夠提高砂漿的耐久性。用硅粉代替水泥也能夠提高砂漿的耐硫酸鹽性能各(種pH下,以膨脹率和強度變化為指標),分析認為粉煤灰和硅粉中CaO的含量低,燦203的含量低,提高了砂漿的抗滲性,降低了w(CaO),所以才提高了其耐久性能。力腐蝕破壞的危險。柏林議會大廈屋頂的突然塌落,即與預應力鋼筋應力腐蝕開裂有很大的關系。應力腐蝕過程一般可分為三個階段:第一階段為孕育期,在這一階段內,因腐蝕過程的局部化和拉應力作用使裂紋生核;第二階段為腐蝕裂紋發展時期,當裂紋生核后,在腐蝕介質和拉應力的共同作用下裂紋開始擴展;第三階段為裂紋急劇生長期,在這一階段中由于拉應力的局部應力集中,裂紋急劇生長導致金屬的拉斷。余水量攪拌至均勻.
3、現場使用時,嚴禁在CGM灌漿料中摻入任何外加劑、外摻料。
4、 每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
5、 冬季施工時,對于外部約束作用,由于澆筑初期混凝土的強度和彈性模量都很低,對于水化熱引起的構件溫升膨脹變形,外部約束產生的作用不大,產生的壓應力也較小,而在降溫過程中隨著混凝土齡期的增長,彈性模量的增高,外部約束對混凝土構件降溫收縮的約束也就越來越大,以致產生很大的拉應力,當混凝土的抗拉強度不足以抵抗這種拉應力時,便開粘結強度不僅與混凝土強度有關系,而且還與鋼筋直徑、混凝土保護層厚度、橫向鋼筋的配置情況等因素有關,對鋼筋的粘結強度進行了廣泛研究,并提出了各自的粘結強度計算式,其中的一些計算式已被相關的規范用來作為計算鋼筋錨固長度的依據。始出現溫度裂縫。此時的溫度裂縫一般為貫穿性裂縫,寬度在0.15——0.6mm之間。CGM灌漿料及拌和水應符合現行《鋼筋混凝土工程施工采取防風、降低混凝土溫度、養護前注意及時進行表面收光等措施能控制塑性收縮,加入有機纖維也能控制混凝土的塑性收縮。最有效的方法是在混凝土終凝以前保持混凝土表面的濕潤,如在表面覆蓋塑料薄膜或噴灑養護劑等。早期沉降收縮裂縫產生在沉降收縮發生的過程中。在骨料沉降過程中,骨料沉落若受到鋼筋、預埋件、模板、大的粗骨料以及先期凝固混凝土的局部阻礙或混凝土本身各部分沉落不均就會產生沉降收縮裂縫。及驗收規范》(GB50204)的有關規定。
&nb在應變平截面假定的基礎上,借助分析承載能力極限狀態下受拉區碳纖維片材應變的發展規律,研究了破纖維片材用于受彎構件正截面加固的有效性。就如何建立耐久性極限狀態方程是目前耐久性設計研究的主要內容。周燕等通過運用環境指數和結構耐久性指數建立了結構構件耐久性極限狀態方程;劉西拉等指出耐久性設計包括計算和構造部分。計算部分與我國現行混凝土結構設計規范設計方法協調,僅在承載能力扱限狀態方程的右端項乗以耐久性設計系數,文中還給出了耐久性設計系數的計算方法。普通米占貼碳纖維加固法是否能夠有效改善加固梁在正常使用極限狀態下的撓度變形和製縫寬度問題進行了分析。sp;6、 攪拌地點應盡量靠近灌漿料施工地點,距離不宜過長。
參考用量:
參考用量計算以2.28~2.4噸/立方米為依據,計算實際使用量。<現存大跨PC連續箱梁橋的設計理論和施工技術并非十分完善,這一點從國內已投入運營的同類橋梁上普遍出現了不同程度的病害而得到反映。/SPAN>
以粉煤灰代替部分水泥不僅可以改善混凝土的和易性,增加膠凝物質,降低混凝土的水灰比,使早期水化熱明顯降低,試驗證明,摻入水泥用量15%的粉煤灰可降低水化熱15%左右,水泥水化熱隨粉煤灰摻量的增加而降低,但摻量必須適度,摻量過多則會降低混凝土的早期強度,增加混凝土的收縮,因此,利用粉煤灰代替部分水泥的大面積混凝士具有顯著的經濟效益和社會效益。江西贛州無收縮灌漿料直銷。