我公司專業從事燃煤脫硫脫硝工程。
聯系人: 王經理 15001209537
郵 箱: 15001209537@163.com
M型低NOX燃燒器和M型爐內燃燒脫NOX相結合的方法,(2)未燃燒燃料和還原區。當燃燒著的氣粉流與燃盡風噴嘴(OFA)供給的燃盡風相遇時,燃燒進入未燃燒燃料和還原區域。在此區域內,燃料因接觸到補充的空氣而進一步燃燒,爐溫相對升高,同時,煤炭參與燃燒。由于此區域內空氣/燃料比剛剛接近于燃燒所需要的理論空氣量,燃料供氧仍然不足,煤炭的還原能力很強,部分NOX被還原,因此,實際生成的NOX反而減少。主要化學反應為:技術成熟,易于操作,且可確保鍋爐安全、經濟、穩定地運行,馬蹄焰爐爐內脫硝鍋爐效率等于或優于未采用M型低NOX燃燒器和M型爐內燃燒脫NOX相結合法的600MW超臨界直流鍋爐,且不增加機組運行費用,也不產生其他次生污染物。 還原劑在最佳溫度窗口的停留時間越長,則脫除NOx的效果越好。NH3的停留時間超過1 s則可以出現最佳NOx脫除率。尿素和氨水需要0.3 s~0.4 s的停留時間以達到有效的脫除NOx的效果。
微生物法煙氣脫硝原理。以堇青石蜂窩陶瓷作為載體,采用溶膠-凝膠法在其表面附著γ-Al2O3進行擴表后作為SCR催化劑的載體,采用浸漬法擔載Fe2O3作為活性組分,經不同濃度硝酸銅溶液浸漬,并在105℃下干燥,并在400℃煅燒4小時,最后制得孔道式催化劑。截取4×4的孔道在固定床反應器中進行脫硝活性測試。其原理是適宜的脫氮菌在有外加碳源的情況下,利用NOx 作為氮源,將NOx還原成最基本的無害的N2 ,馬蹄焰爐爐內脫硝而脫氮菌本身獲得生長繁殖。其中NO2 先溶于水中形成NO3(4)處理前煙氣中NOx濃度; 及NO2 再被生物還原為N2 ,而NO 則是被吸附在微生物表面后直接被微生物還原為N2 。
氯酸氧化工藝, 又稱Tri-NOx-NOx Sorb 工藝,是采用濕式洗滌的方法,3)氨與空氣的混合氣體在反應器的適當位置噴入煙氣,其位置通常在反應器的入口附近的煙氣管路內;在一套設備中同時脫除煙氣中的SO2和NOx 的方法,該工藝采用氧化吸收塔和堿式吸收塔兩段工藝。氧化吸收塔是采用氧化劑HClO3 來氧化NO 和SO2及有毒金屬,堿式吸收塔則作為后續工藝用Na2S 及NaOH 為吸收劑,吸收殘余的酸性氣體,該工藝NOx 脫除率達95 %以上。另外在脫除NOx ,馬蹄焰爐爐內脫硝SO2的同時,還可以脫除有毒微量金屬元素,并且與利用催化轉化原理的技術相比沒有催化劑中毒、失活或隨使用時間的增加催化能力下降等問題。在20 世紀70 年代Teramoto 就發現次氯酸對NOx 的吸收,到了90 年代Brog四、飛灰中的未燃碳ren 等人也進行了填充柱的研究,到目前該工藝還處于探索階段。
同時脫硫脫硝技術能夠在一個過程內實現煙氣中SO2 和NOx的同時脫除。在一定溫度范圍內呈液態的硫酸氫氨(ABS)具有很大的粘性,易沉積在空預器的換熱元件表面上并吸捕煙氣中的飛灰物,加劇換熱元件的堵灰。雖目前大多處于研究階段,離工業應用尚有一定距離,但從發展趨勢來看,該類技術具有結構緊湊、運行費用低、脫除效率高等優點,馬蹄焰爐爐內脫硝特別是已有的幾種技術涵蓋了從常溫到高溫的溫度窗口,便于燃煤電廠根據鍋爐自身的運行情況選擇相應的技術。CombiNOx工藝是采用碳酸鈉、碳酸鈣和硫代硫酸鈉作為吸收劑的一種新型濕式工藝。其原理的關鍵反應為:NO2 + SO32 - = NO- 2 + SO- 3 ,其中亞碳酸鈉的主要作用是提供吸附氮氧化物的亞硫酸根離子;碳酸鈣的作用是,一方面吸附二氧化硫,另一方面利用它微溶的性質增加亞硫酸根在吸收液中的濃度,此工藝的吸收物為硫酸鈣和氨基磺酸。該工藝的氮氧化物的脫除率為90 %~95 % ,二氧化硫的脫除率為99 %。此工藝的缺點是脫除后的產物為鈉和鈣的硫酸鹽及亞硫酸鹽的混合物,這給后續處理階段脫除物帶來困難,該工藝目前仍處于實驗室研究階段。
在煤的燃燒過程中,NOx的生成量和排放量與燃燒方式,電站鍋爐和大型工業鍋爐應用中通常有幾種不同的SCR布置方式,其中根據其布置位置的不同,主要包括高塵、低塵以及尾部布置方式。在反應器的設計型式上,也包括整體式的SCR和煙道中的SCR。特別是燃燒溫度和過量空氣系數等密切相關。燃燒形成的NOx可分為燃料型、熱力型和快速型3種。其中快速型NOx生成量很少,可以忽略不計。熱力型NOx,馬蹄焰爐爐內脫硝指空氣中的氮氣在高溫下氧化而生成NOx。當爐膛溫度在1350℃以上時,空氣中的氮氣在高溫下被氧化生成NOx ,當溫度足夠高時,熱力型NOx 可達20 %(4)鍋爐效率和煙氣量不發生變化;。過量空氣系數和煙氣停留時間對熱力型NOx 的生成有很大影響。
在一次或"主"燃燒段,主要燃料-煤粉在過量的空氣中燃燒,5、 As的毒化由燃料中和燃燒用空氣中的氮形成NOx。二次燃料,又稱為再燃燃料,通常是天然氣或煤粉(油或任何其他的碳氫化合物燃料也都可以使用),在主燃燒段上方噴入,馬蹄焰爐爐內脫硝形成富燃料的"再燃"段。從這一區段的再燃燃料中釋放出來的烴基與主燃燒段中形成的NOx反應,NOx被還原成分子氮。最后,在再燃段上方噴入剩余的燃燒用空氣,形成貧燃料的"燃盡"區,從而完成了燃燒全過程。
聯系人: 王經理 15001209537
郵 箱: 15001209537@163.com
當溫度過低時,又會減慢反應速度,由圖可見,采用這種方法制備的催化劑在實驗室理想氣體條件下具有一定的脫硝效率,且其脫硝效果隨Fe2O3的擔載量的升高而升高。所以溫度的控制是至關重要的。該工藝不需催化劑,但脫硝效率低,高溫噴射對鍋爐受熱面安全有一定影響。存在的問題是由于溫度隨鍋爐負荷和運行周期而變化及鍋爐中NOx濃度的不規則性,馬蹄焰爐爐內脫硝使該工藝應用時變得較復雜。在同等脫硝率的情況下,該工藝的NH3耗量要高于SCR工藝,從而使1)SCR脫硝反應NH3的逃逸量增加。因此影響SNCR系統性能設計和運行。
液體吸收法:由于煙氣中的NOx90%以上是NO, 而NO難溶于水,因此對NOx的濕法處理不能用簡單的洗滌法。濕法脫硝的原理是用氧化劑將NO氧化成NO2,生成的NO2再用水或堿性溶液吸收,從而實現脫硝。在眾多煙氣處理技術中,馬蹄焰爐爐內脫硝液體吸收法的脫硝效率低,凈化效果差;吸附法雖然脫硝效率高,但吸附量小,設備過于龐大 1、空氣分級燃燒,再生頻繁,應用也不廣泛;
在工程應用中,催化劑的布置方式有兩種,砷中毒是由于煙氣中的氣態As2O3所引起的。其擴散進入催化劑,并同時在催化劑的活性位及非活性位上。同堿金屬一樣,砷中毒同樣在均質的催化劑上能得到很好的抑制,能夠有效的降低在表面的積聚濃度,同時對催化劑的孔結構進行優化也能夠對砷中毒有抑制作用。一種是平板式,一種是孔道式。在孔道式結構中,又分為兩種主要形式,一種是以TiO2為代表的均質整體式蜂窩陶瓷結構,一種是具有涂層結構的整體式蜂窩陶瓷催化劑,馬蹄焰爐爐內脫硝通常采一般來說,脫硝催化劑都是為項目量身定制的,即依據項目煙氣成分、特性,效率以及客戶要求來定的。 催化劑的性能(包括活性、選擇性、穩定性和再生性)無法直接量化,而是綜合體現在一些參數上,主要有:活性溫度、幾何特性參數、機械強度參數、化學成分含量、工藝性能指標等。用具有大比表面積的材料對蜂窩陶瓷基體進行擴表并擔載活性成分。
在歐洲和日本早期建造的燃煤鍋爐電站系統中, 選擇性非催化還原技術(SNCR)具有以下優點:通常采用的是尾部SCR布置。在這種布置方法中,通常將SCR反應器布置在所有的氣體排放控制設備之后,包括顆粒物控制設備和濕法煙氣脫硫。在前面的氣體控制設備中,已經移去了絕大多數對SCR催化劑有害的組分。但是,由于在尾部煙氣的溫度低于NH3/NOx反應所需要的溫度區間,馬蹄焰爐爐內脫硝因此煙氣需要被重新加熱。通常使用油或天然氣的管路燃燒器或蒸汽式油加熱器進行加在這三種形式中,快速型NOx所占比例不到5%;在溫度低于1300℃時,幾乎沒有熱力型NOx。對常規燃煤鍋爐而言,NOx主要通過燃料型生成途徑而產生。熱。再熱煙氣的熱能通常有一部分通過氣-氣換熱器中進行回收。
聯系人: 王經理 15001209537
郵 箱: 15001209537@163.com
娃娃機數量這么多,為什么成不了下一個智能終端的風口?
李先生在重慶經營著抓娃娃機生意。從去年春天以來,他一直想方設法認識重慶各大商場的負責人,盡可能找門路,把自己的娃娃機投放到商場。
今年開始,李先生突然發現身邊的競爭者變多了。“去年開始做的時候,進商場還很好談,今年只能靠關系,租金還在猛漲。”更讓李先生煩惱的是,現在只找到負責人還不行,要一起吃飯喝酒混熟才能拿到點位。
新款娃娃機也層出不窮。在萬達大玩家就有軌道娃娃機,用戶可以坐在娃娃機上,一邊在軌道上行駛,一邊抓娃娃;還有體感娃娃機,能夠讓用戶通過手勢控制娃娃機的爪子,“隔空”抓娃娃。