★灌漿料的用途
(1)、混凝土結構加固和修補:
1.使用高強無收縮灌漿料進行混凝土梁,板,栓等構件的截面加大加固處理。
2.使用CGM高強無收縮灌漿料進行混凝土孔洞修補。
3.后張預應力混凝土結構管道灌漿及封錨。
4、使用CGM高強無收縮灌漿料進行混凝土路面的修補。
(2)、設備基礎二次灌漿 :適用于機器底座,發腳螺栓等;以及鋼結構(鋼軌,鋼架,鋼柱等)與基礎固定連接的二次灌漿。
(實際工程中,通常加固時由于無法卸載或只能部分卸載,使得結構在加固前已經受力,此時使用CFRP;進行結構加固,稱之為結構的二次受力。3)、地腳螺栓錨固及鋼筋栽埋 :
地鐵,隧道,地下等工程逆打法施工縫的嵌固。
2.建筑物的橋梁,板柱基礎,地坪和道路的補強。
3. 可進行地腳螺栓和螺栓和鋼筋的錮固及結構補強。
BR高強無收縮灌漿料性能特點,初始流動度大于300mm,30min后保留值為260mm,一天強度大于20Mpa,三天強度大于40Mpa,28天強度大于60Mpa.
★灌漿料的八大特點
1、微膨脹性:保證設備與基礎之間緊密接觸, 二次灌漿后無收縮。
2、灌漿料的自流性高:可填充全部空隙,滿足設備二次灌漿的要求。
3、抗離析性能:高強無收縮灌漿料克服了現場使用中因加水量偏多所導致的離析現象。
4、綠色環保:不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不 爆,可按一般貨物運輸。
5、灌漿料的早強、高強:1-3天抗壓強度30-50Mpa以上。
6、可冬季施工:允許在-10℃氣溫下進行室外施工。
7、灌漿料的抗開裂能力:現場使用中因加水量不確定、環境溫度不確定以及養護條件限制等因素裂紋現象。
8、耐久性強:經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
★灌漿料灌漿的準備
1、檢查管道出氣孔,有凝義時,選擇有代表性的管道中進行灌漿試驗。
2、灌漿設備、抽真空設備,灌漿泵的壓力:0.4~0.7Mpa、真空泵的真空壓力:—0.1Mpa.
3、采用鼓鳳或按批準的規定方法進行對后張法預應力混凝土構件的耐久性而言,壓漿飽滿率高的孑L道自然更為有利。因此,預應力孔道壓漿的施工還是需要嚴格的監控,以保證質量。按照《公路橋涵施工技術規范》(JTJ。埃矗薄玻埃埃埃┮螅⒏鶕敬握{查的結果,為保證孑L道壓漿的飽滿率,在孔道壓漿施工時,有條件的情況下,可以根據現場試驗,對一定長度、曲率和直徑的孑L道所要求的漿體的稠度、體積、穩壓強度和壓漿所需時間等指標進行量化,按量化指標進行壓漿施工。管道清理,將灌道中的水、冰和雜物清理干凈。
★灌漿料的操作
1、灌漿完成后,應防止漿體從管道通過分析銹蝕前后鋼筋的各項力學性能指標,分別研究了不同類型、不同直徑鋼筋銹后名義力學性能隨鋼筋質量銹蝕率的退化規律,并在此基礎上,對同類異徑、同徑異類鋼筋銹后名義力學性能的退化情況進行了比較分析,研究了鋼筋直徑及鋼筋類型對其銹后力學性能的影響。流失。
2、灌漿必須從最低處或從最低的鋼絞線開始,以恒定的速度連續進行灌漿,灌滿為止,在波紋管中應適當放慢灌漿速度。
封錨
1、對需要封錨的錨具,在管道灌漿完畢后先將錨具周圍沖洗干凈并對梁端混凝土進行鑿后設置鋼筋網,在錨頭外加裝錨罩,用灌漿材料將錨頭封死,最后在封錨的灌漿材料外涂刷防水涂層。
2、當漿體硬化時,所有開孔,灌漿管和氣孔均要緊密封口以防止水有有害物的侵入;
注:1、灌漿層厚度δ≤150mm時,選用CGM-1(CGM-380)或CGM-2(CGM-340);灌漿層厚30mm<δ<150mm時,選用CGM-2(CGM-340)或CGM-3(CGM-混凝土的抗裂性能是一個綜合的概念,主要通過控制抗裂可靠性(或安全系數)來保證。根據前面在材料選擇一節中的論述,工民建領域泵送大體積混凝土骨料最大粒徑應根據板厚、鋼筋間距、泵送工藝等綜合確定。而普通鋼筋由于其耐腐蝕性較差,目前,補償收縮混凝土的研究和發展逐漸認識到,如果有意識地控制和利用混凝土的自生體積膨脹變形,有可能大大改善某些混凝土的抗裂性。但對于普通水泥混凝土,由于大部分屬于收縮的自生體積變形,數量級較小,一般在計算中可忽略不計。在混凝土中尚有80%的游離水分需要蒸發。多余水分的蒸發會引起混凝土體積的收縮干(縮),這種收縮變形不受約束條件的影響。若有約束,即可引起混凝土的開裂,并隨齡期的增長而發展。在銹蝕發生后,其表面銹蝕位置與未銹位置對銹蝕的抵抗能力較為接近,不易發生銹蝕位置銹蝕較其他位置更為嚴重的現象,故其截面損失較高強鋼筋更為均勻。因此,對于高強鋼筋更應加強防銹措施,防止因銹蝕后發生嚴重的截面損失而造成力學性能的退化。同目前在主體結構的施工過程中,普遍存在著質量與工期之間的較大矛盾。一般主體結構的樓層施工速度平均為5-7天左右一層,最快時甚至不足5天一層。因此當樓層砼澆筑完畢后不足24小時的養護時間,就忙著進行鋼筋綁扎、材料吊運等施工活動,這就給大開間部位的房間雪上加霜。除了大開間的砼總收縮值較小開間要大的不利因素外,更容易在強度不足的情況下受材料吊卸沖擊振動荷載的作用而引起不規則的受力裂縫。并且這些裂縫一旦眾多研究表明,鋼筋銹蝕是引起混凝土結構耐久性劣化最主要、最直接的原因。鋼筋銹蝕的嚴重后果有三方面,一是鋼筋銹蝕引起鋼筋截面減小和強度降低;二是鋼筋銹蝕產物產生體積膨脹(約2~4倍),導致混凝土保護層沿筋開裂甚至脫落,從而使混凝土截面產混凝土澆筑初期,水妮水化產生大量水化熱,使混凝土的溫度良快上升但由于混凝土表面散熟條件較好,熱量可以向大氣中散發,因而溫度上升較少,而混凝土內部由于散熱條件較差,熱量散發少,因而溫度上升較多,內外形成溫度樣度,形成內外約東。結果對銹后鋼筋力學性能的研究還有可改進和完善之處。首先,在銹蝕鋼筋的獲取上,目前的方法都有不足之處,應進一步完善;常用的實驗室通電加速銹蝕法中,實際銹蝕量與計算銹蝕量之間存在差異,兩者之間的關系需要更多的實驗來修正;同時,實際構件中鋼筋的銹蝕情況與實驗室內鋼筋的銹蝕情況不同,如何更好地在實驗室內進行模擬實驗,尚需進一步研究。混凝土內部產生壓應力,面層產生拉應力,當該拉應力超過混凝土的抗拉強度時,混凝土表面就產生裂縫。生損傷;三是鋼筋銹蝕使鋼筋與混凝土之間的粘結性能退化,影響鋼筋混凝土結構的整體受力,甚至導致結構的破壞。形成,就難于閉合群筋效應的界限間距以①25植筋鋼筋、15d植筋深度為例,當植筋鋼筋間距為3d時,應力疊加區占總應力區域的75%以上;當植筋鋼筋間距為6d時,應力疊加區域占總應力區域的33%;當植筋鋼筋間距為9d時,應力疊加區域小于總應力區域的5%;當植筋鋼筋間距增大至12d時,應力疊加區域小于總應力區域的2%。當疊加應力區域小于總應力區域的10%,可近似忽略群筋效應對混凝土基材的影響,可按單根植筋的情況考慮。因此,在實際工程中,建議取群筋界限間距為6d,即植筋間距>6d時,近似認為植筋鋼筋之間不存在群筋效應,其受拉破壞形態及承載力均可按單根植筋鋼筋情況考慮。,形成永久性裂縫,這種情況在高層住宅主體快速施工時較常見。時,尚應加強實驗、調查和研究,從而深入地探知高強鋼筋的銹蝕機理,以便采取更為有效的防銹措施。主要通過規定坍落度來控制。根據經驗,大體積混凝土坍落度通常控制在14~16cm的水平上。主要用來控制強度波動以保證施工質量,同時也間接控制了混凝土的均勻性,而這些對大體積混凝土的裂縫控制是十分重要的。大體積混凝土配合比的基本參數有水灰比、砂率、用水量和坍落度等,由于不預應力材料包括預應力筋(簡稱力筋) 、錨具、夾具、連接器、金屬螺旋管。這些材料進場后都要進行檢驗,檢驗項目有:包裝、標志、合格證、質量證明書和說明書;表面質量;尺寸、外形;預應力筋力學性能;金屬螺旋管徑向剛度和抗滲漏檢驗。檢驗頻率按“公路橋規J TT041 - 2000”執行。檢驗“批”以相同的生產批號或出廠編號來劃分。同地區混凝土材料的特征差異很大,配合比設計時都采用經驗數據和試驗的方法。其中工作量最大的是用不同品種、不同粒徑級配骨料所需要的砂率及用水量的試驗。可先假定一個基準配合比,再根據實際條件,進行調整。調整時可參照國內外資料混凝土中鋼筋銹蝕狀態檢測方法主要有兩種,無損檢測方法和傳統的破損檢測方法。無損檢測技術主要有物理和電化學法兩大類。物理法主要通過測定鋼筋銹蝕引起的電阻、電磁、熱傳導、聲波傳播等物理特性的變化來反應鋼筋的銹蝕情況,其中主要的方法有電阻棒法、溫流探測法、射線法等為了分析開裂原因也需要調查裂縫的開展路徑。裂縫不是同時全面展開,微觀上看,必有開展路徑,找出裂縫的開展路徑,也就找出了應力方向,有助于裂縫原因的分析。可以依據裂縫寬度判斷裂縫的開展路徑,裂縫由較寬一端向較細一端開展。。但由于影響因素復雜,目前還處于試驗室研究階段,工程應用的比較少。電化學方法主要通過測定鋼筋混凝土銹蝕體系的電化學特性來確定混凝土中'調筋銹蝕狀態或速度,與物理法比較,具有檢測速度快、靈敏度高、可連續跟蹤和原位測試等優點。由于無損檢測方法可以不破壞原結構,所以適用于在役結構的銹蝕率檢測,但其測試精度只能滿足工程需要。及自己的經驗數據,待配合比調整后再進行試驗,直到滿足要求為止。300) ;灌漿層厚度δ≥30mm時,選用CGM-3(CGM-300)或CGM-4(CGM-300)型;路面快速搶修,製鑓出現前,截面處將這種在施工期間主要因間接作用(收縮、溫度等)引起的裂縫稱作混凝土“施工期間間接裂縫”。混凝土施工期間間接裂縫多發生在混凝土澆筑后的數天或十幾天的時間段內,也有在澆筑完畢的幾個月后仍主要因間接作用產生裂縫的,但通過試驗分析得出:粘鋼時最大荷載根據正常使用條件,不同卸荷粘鋼加固混凝土最小卸荷即粘鋼時梁承受的最大荷載應小于標準荷載,且裂縫寬度應小于《預制混凝土構件質獄檢驗評定標準》GBJ321-90中規定的構件最大裂縫寬度允許值:混凝土梁粘鋼加固后,鋼板包住拉區混凝土,改變了原混凝一梁拉應變值和混凝上保護層的影響作用,推遲了裂縫開展,抗裂性能有所提高。與U后續正常使用狀態的長時期相比,施工期間間接裂縫可稱作“早期裂縫”。于彈性狀態,各裁面受拉區混凝土應力大致相同。第一條製鑓出現在混凝土抗拉強度最弱的截面。開製瞬問,製縫截面處混凝土的應力降低至零,受拉混凝土向兩邊回1992年,歐洲混凝土委員會頒布的《耐久性混凝土結構設計指南》反應了當時歐洲混凝土結構耐久性研究的水平。2001年亞洲混凝土模式規范委員會公布了《亞洲混凝土模式規范》(ACMC2001),提出了基于性能的設計方法。我國從20世紀60年代開始混凝土結構的耐久性研究。當時主要研究內容是混凝土碳化和鋼筋銹蝕。80年代初,我國對混凝土結構的耐久性進行了廣泛而深入的研究,取得了不少成果。中國土木工程學會于1982、1983年連續兩次召開了全國耐久性學術會議,為隨后混凝土結構規范的科學修訂奠定了基礎,推動了耐久性研究工作的進一步進展。縮,混凝士和鋼筋表面以及混凝土和CFRP布表面產生變形差。隨著距製截面距離的增大,混凝土的回縮減少,當達到一定的間距i.時,混凝土和i円筋以及混凝土和CFRP布之間投有變形差,混凝土的拉應力又;達到即將開製的狀態,當荷載繼續增大,該截面又將產生第二條製鑓,即次生製裝。選用CGM-4(CGM-270)型。
2、抗壓強度按:《GB177-85水泥膠砂強度試驗方法》;膨脹率按:《GB119-88混凝土外加劑應用技術規范》。
★灌漿料的包裝貯運
1.包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2.保質期為6個月,超出保質期應復檢合格后方可使用 。
★灌漿料的配制:
1、CGM灌漿料拌和時,加水量應按隨貨提供的產不同構件節點處差異沉降收縮梁、板混凝土連續澆筑,終凝前應用碳纖維片材進行抗彎加固主要是利用碳纖維抗拉強度高的特性,將碳纖維片材粘貼在構件的受拉面使之與混凝土共同承受荷載,以提高構件的抗彎承載力?梢愿鶕煌募庸虖姸鹊男枰鴽Q定CFRP的用量。梁的沉降收縮大于板的沉降收縮,沒有采取適當措施時,梁、板節點出可能出現裂縫。同樣原因,梁、柱混凝土連續澆筑時,也可能在梁、柱節點處由于沉降收縮不同產生開裂。以上幾種初始微裂縫:混凝土內應力引起的裂縫、塑性收縮裂縫及沉降收縮裂縫等一般在混凝土終凝、硬化前產生,混凝土尚處于塑性狀態,預防及處理均較為容易。這幾種裂縫宜從細觀尺度分析,其開裂機理和宏觀尺度下的混凝土開裂機理不同。有些裂縫僅在混凝土內部,外部肉眼不可見;有些裂縫僅在表面,深粘鋼加固是用特制的結構膠作為粘結劑,將鋼板粘貼在鋼筋混凝土結構的表面,通過粘結劑的性能達到加固和增強原結構強度和剛度。度很淺;有些裂縫從內部發展到表面;有些裂縫從表面向里發展到一定深度,甚至貫穿構件截面。品合格證上的推薦用水量加入,攪拌均勻當今國際上作為研究開發應用重點的是碳纖維增強塑料(CarbonFiberReinforcedPlastics,簡寫為CFRP),而在結構鋼筋混凝土T梁粘貼鋼板加固斜截面抗力不定性粘貼鋼板加固RC梁抗力的不定性由材料性能的不定性、幾何參數的不定性和計算模式的不定性等隨機變量組成。目前,材料性能的不定性與幾何參數的不定性的研究,在用橋梁可靠度研究已有豐富資料。但對粘貼鋼板加固RC梁抗力計粘結鋼板加固法,若主梁承載力不夠,或縱向主筋發生銹蝕,或板梁橋的主梁產生較大橫裂縫,可用粘結劑和錨栓將鋼板粘貼錨固在混凝土構件的受拉區或薄弱部位,使其與構件形成整體受力,以鋼板起到增設的增強鋼筋的作用,改善橋梁的承載能力。該法特點是受力可靠、操作簡單方便,施工周期短,所占空間小,不影響被加固結構外觀。主要適用于環境溫度在-20°C~60°C范圍內,相對濕度不大于70%及無化學腐蝕地區。算模型,由于復合材料受力復雜性,使得其模型與規范規定的擬建結構計算公式有較大誤差。一般來說,影響粘貼鋼板加固RC梁抗力計算模型不定性因素主要有:結構損傷程度、破壞準則、粘貼用膠,以及錨固及錨栓等。加固中研究應用最多的應數碳纖維片材,這是一種非常薄的片狀材料,碳纖維片材加固修補混凝土結構技術就是近年來發展起來的混凝土結加固新技術。用cFRP片材增強結構物時,是將其用粘結相1t脂(通常為環氧樹脂)粘貼于需補強的結構表面或包裹于結構表面,對結構的不同部位和不同環境下的結構都可以方便地施工,工承裁力的提高只能在一定范圍內有效,加固面積超過一定限度后,加國效果就不甚明顯了。而且如果加固面積過大,還可能發生超筋碳壞,導致碳纖維布的強度得不到充分發揮。在設計過程中,應控制碳纖維的粘貼面積。期板短,而且結構外觀和尺寸不會出現明顯變化,修復加固效果顯著。即可使用。對于地腳螺栓錨固和栽埋鋼筋,用水量可根據工程實際情況適當減少。拌和用水應采用飲用水,使其它水源時,應符合現行《混凝土拌和用水標準》(JGJ63)的規定。
2、 CGM灌漿料的拌和可采用機械攪拌或人工攪拌。 推薦采用機械攪拌方式,攪拌時間一般 為1-2分鐘(嚴禁用手電鉆式攪拌器)。采用人工攪拌時,應先加入2/3的用水量拌和2分鐘,其后加 入剩余水量攪拌至均勻.
3、現場使用時,嚴禁在CGM灌漿料中摻入任何外加劑、外摻料!
4、 每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
5、 冬季施工時,CGM灌清華大學的葉列平等人根據碳纖維布加固鋼筋混凝土梁受彎性能的試驗研究,對受彎碳壞形態、極限狀態和設計要求;進行了討論。利用基于平截面假定的正截面受彎承載力的計算理論,分析了配筋率、碳纖維增強塑料用量以及二次受力等因素的影響。漿料及拌和水應符合現行《鋼筋混凝土工程施工及驗收規范》(GB50204)<水泥復合砂漿鋼筋網條帶加固和外加鋼筋網砂漿面層加固砌體結構方法,提出采用無機植筋代替傳統的穿墻拉結筋,解決了單面加固、施工復雜和對原結構損壞大等一系列的問題。并對無機植筋膠進行開發研究,在傳統水泥基植筋膠的基礎上提出了一種新型的無機植筋膠,新型的無機植筋膠在水泥和超細添加料組成的二元混合料的基礎上添加超細石英砂形成良好級配的三元混合料,改善混合體的工作性能,減小收縮,在保證無機植筋膠質量的同時大大節約了無機植筋膠的成本,適合于墻體加固中量大面廣的小直徑鋼筋植筋。SPAN style="FONT-FAMILY: 宋體">的有關規定。
6、 攪拌地點應盡量靠近灌漿料施工地點,距離不宜過長。
參考用量:
參實際工程中一般采用U形和川形加固,當粘貼U形鋼板帶時,由于加固梁腹板側面與底部鋼隨著配筋率的提高,試驗梁的延性明顯下降;對于無機膠粘貼碳纖維布加固梁,試驗梁的延性隨著碳纖維布層數的增多而下降;通過B13梁和B14梁與B12梁的比較,無機膠粘貼碳纖維布加固梁的延性比有機膠粘貼碳纖維布加固梁的延性有所下降。用無機膠粘貼碳纖維布加固鋼筋混凝土梁碳纖維布的極限強度僅能發揮到用有機膠粘貼時極限強度的一半左右,根據試驗結果,碳纖維布破壞時的應變平均在5000膽。板的錨固能得到保證,只有加固梁腹板側面頂部的鋼板會出現應力集中設計方可在掌握混凝土收縮性能、施工條件的基礎上,進行基本分析計算,以改善約束條件筑,并提高混凝土的抗開裂能力。在混凝土結構安全方面,設計方與施工方、混凝土提供方的聯系可以靠單一條件(如混凝土彈性模量的間接影響)及抵抗開裂的能力均是時間的函數,而且,時間的影響是關鍵性的,不能忽視。對收縮開裂問題的力學計算分析要比對強度引起的結構安全問題復雜。,所以鋼板的抗剪貢獻較顯著;當采用,形(側面粘貼)加固時,由于加固梁腹板側面上下端的鋼板較易發生應力集中現象,錨固長度不足,隨著裂縫的產生和發展,在鋼板的強度完全發揮以前就易發生粘結破壞,故加固效果較差。考用量計算以2.28~2.4噸/立方米為依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。上饒高強無收縮灌漿料直銷|江西灌漿料廠家。