2. 以及鋼結構(鋼軌、鋼架、鋼柱等)與基礎固定連接的二次灌漿。
3. 地鐵、隧道、地下等工程逆打法施工縫的嵌固。
4. 適用于機器底座、地腳螺栓等設備基礎灌漿。
5. 灌漿橋梁粘鋼加固設計應按下列原則進行承載力驗算:結構的計算應根據加固后結構的實際應力情況和實際的邊界條件進行;結構的計算截面積,保留的構件采用基于檢測結果的計算截面積,新增構件采用實際有效截面積,并考慮結構在加固后的實際受力程度、加固部分的應變滯后特點以及加固部分與原結構協同工作的程度;加固后使結構恒載增大時,應對被加固的相關結構及基礎進行驗算。料可進行地腳螺栓和鋼筋的錨固及結構補強。
★灌漿料的特點<
鉆孔按設計圖紙要求明確螺栓錨固位置、成孔直徑及錨固深度。/div>
1、自流性高
可填充全部空隙,滿足設備二次灌漿的要求。
2、可冬季施工
允許在-10℃氣溫下進行室外施工。
3、灌漿料的抗離析
克服了現場使用中因加水量偏多所導致的離析現象。
4、微膨脹性
保證設備與基礎之間緊密接觸,二次灌漿后無收縮。
5、抗開裂
現場使用中因加水量不確定、環境溫度不確定以及養護條件限由于孔道內只有極少空氣,漿體在負壓環境下流動時,這些混在漿體中的氣泡將破裂而被抽出,漿體中很難形成氣泡;在制備灌漿料過程中,由于采用新型的高性能孔道灌漿材料,能在很低的水膠比的條件下獲得理想的流動度,補償了漿體在塑性期和硬化后期的收縮,減少了漿體離析泌水現象的發生,提高了漿體的強度和耐久性。同時,通過采用與之配套的塑料波紋管及連接套,可確保預應力管道的密封性,從而有效保護預應力筋不受腐蝕。制等因素裂紋現象。
6、灌漿料的耐久性強
經上百萬次疲勞試驗50次凍融循環實驗強度無明顯變化。在機油中浸泡30天后強度明顯提高。
7、早強、高強
2天抗壓強度≥20Mpa;3天抗壓強度≥30Mpa;28天抗壓強度≥65Mpa。
★灌漿料的包裝貯運
1、包裝規格:50kg/袋,存放在通風干燥處并防止陽光直射。
2、灌漿料的保質期為6個月,超出保質期應復檢合格后方可使用 。
3、不含有苯系物、鹵代烴、甲醛、重金屬等成分,無毒、無味、無污染、不燃不爆,可按一般貨物運輸
★灌漿料的施工
第一步:基礎處理
基礎表面應進行鑿毛處理。清潔基礎表面,不得有碎石、浮漿、浮灰、油污和脫模劑等雜物。灌
漿前24小時,基礎表面應充分濕潤,灌漿前1小時,清除積水。
第二步:支摸
1、按灌漿施工圖支設模板。模板與基礎、模板與模板間的接縫處用水泥漿、膠帶等封縫,達到整
在預應力工程行業內,有關預應力孔道壓漿受到廣泛的關注。在體內后張預應力體系中,當預應力筋張拉之后,在孔道內壓漿是恢復預應力筋握裹力和防腐的主要措施。由于孔道內預應力筋的腐蝕難于被不同鋼筋樣品在實海環境中的腐蝕速度均比在實驗室干濕循環環境中小,這主要是由于混凝土樣品在實驗室干濕交替環境中比在實海環境中干燥的更充分,促進腐蝕性鹽類在混凝土中的積累。而劃傷的不同涂層鋼筋在海洋環境中的腐蝕速度均與在實驗室干濕循環實驗中的不同,這主要可能是由于劃痕的尺寸大小不同引起氧在鋼筋表面的不均勻分布導致的。在實驗室干濕循環實驗中,其劃痕尺寸(4minX0.4ram)較小,氧主要在環氧涂層/鋼筋界面還原,環氧涂層的阻擋層作用使氧在環氧涂層/鋼筋界面的濃度較低,因而供氧不足,使陰極反應較弱,不足以維持劃痕部位的陽極反應。然而在實海潮差環境中,劃傷的環氧涂層鋼筋表面的劃痕尺寸(10minX0.8ram)較大,氧主要分布在劃痕下的鋼筋表面,并不斷發生還原反應,可維持劃痕下鋼筋表面的陽極反應,但是劃痕的尺寸依然限制了陰極還原的氧的量。從而證明,在實驗條件下,當鋼筋表面環氧涂層發生少量機械損傷時,環氧涂層仍可對鋼筋提供良好的保護作用。發現,所以孔道壓漿是一項不可忽視、尤顯重要的操作。 體模板不漏水的程由于砼保護層普遍偏小,而施工時采用的保護層水泥墊塊都已損壞和移位,導致梁板保護層失效,加之預應力孔道壓漿多數不到位使箱梁底板和板梁底面出現許多縱橫向裂縫。建議推廣應用塑料墊塊控制保護層厚度。度。
2、模板與設備底座四周的水平距離應控制在100mm左右,以利于灌漿施工。
3、模板頂部標高應高出設備底座上表面50mm。
同濟大學混凝土材料國家重點實驗室(張雄、張小偉、肖瑞敏等)以典型混凝土配合比為基準,連續改變單一因素展開試驗,研究各種因素.與混凝土收縮的關系和影響程度。分別按重量配合比和體積配合比設計。試驗多按《普通混凝土長期性能和耐久性能試驗方法》(GBJ82.85)收縮方案進行,為排除混凝土成型和環境因素對收縮的影響,每組試驗的混凝土試件成型工作都在一天完成。同批混凝土試件同步成型,同步測試。每個配合比按現行混凝土收縮試驗標準試件要求成型3聯100mm×100mm×515mm的測試試件,在Z成型完畢后,立即帶模放入標準養護室養護,養護2d拆模,拆模后繼續在標準養.護室養護,標準養護達3d后轉移至溫度20±2"12、相對濕度60%±5%的養護室中,預置4h后,用混凝土收縮膨脹儀測量其初始長度。然后繼續在此干燥養護室中養護,并按規定時間測其變形讀數,這樣測試所得的混凝土收縮值即為其干縮值。
4、灌漿中如出現跑漿現象,應及時處理。
第三步:灌漿料的施工配制
1、一般地,按通用加固型按13-14%的標準加水攪拌,豆石加固型按9-10%的標準加水攪拌。
2、推薦采用機械攪拌方式,攪拌時間一般為1-2分鐘(嚴禁用手粘貼碳纖維布加固完整梁、預裂梁及保持荷載梁可以達到相近的極限荷載,即不同預裂程度或開裂程度對加固梁的極限承載能力幾乎沒有影響。預裂程度對加固梁鋼筋應變及截面剛度的影響比較明顯,預裂程度越高隨著MCI-A摻量的增加,阻銹劑MCI.A對鋼片的緩蝕率逐漸增大,當摻量為2.Og時,阻銹劑的緩蝕率達到最大,當繼續增加摻量時緩蝕率變化很小,分析原因是隨著MCI.A摻量的增加,在鋼片上吸附的阻銹劑分子也在增加。當阻銹劑MCI-A在鋼片上達到吸附與脫附平衡時,緩蝕率即穩定在一定范圍內。,受拉區鋼筋應變及撓度降低幅度越大,加固效果越明顯,這與實際橋梁的檢測結果是吻合的。配筋率對加固預裂梁碳纖維布參人受力的程度影響較大,在相同加固量的情況下,配筋率越小,對結構承載能力及剛度的提高幅度越大將HIC20.15d錨固構件與未錨固構件JCT20.15d數據相比較,可知:單錨構件開裂荷載提高了107.9%,屈服荷載提高了35.79%,峰值荷載提高了32.34%。雙錨構件開裂荷載提高了70.62%,屈服荷載提高了27.58%,峰值荷載提高了12.95%。比較結果再次證明了錨固效果與原結構損傷程度的關系,同時也說明錨栓的錨固效果良好,在遭受反復荷載的時候能夠有效地提高構件的承載力,延緩構件的破壞。,鋼筋應變改善越明顯。持載加固梁在正常使用荷載水平下抗彎剛度及受拉鋼筋應變的改善程度明顯低于卸載加固梁,因此,實際橋梁加固時,建議盡量在封閉交通的情況下進行粘貼施工,這對提高結構的耐久性是非常有利的。試驗過程中觀察到粘貼質量直接影響碳纖維布的斷裂模式,加固施工時,必須保證碳纖維布材的充分浸漬及界面的粘結質量以利碳纖維布整體強度的發揮。電鉆式攪拌器)。采用人工攪拌時,應先 加入2/3的用水量拌和2分鐘,其后加入剩余水量攪拌至均勻。
3、每次攪拌量應視使用量多少而定,以保證40分鐘以內將料用完。
4、現場使用時,嚴禁在HGM灌漿料中摻入任何外加劑、外摻料。
第四步:灌漿施工方法
1、較長設備或軌道基礎,應采用分段施工。
2、幾種常用灌漿方式圖示
3、二次灌漿時,應符合下列要求。
①、當設備基礎灌漿量較大時,豆石加固型灌漿料的攪拌應采用機械攪拌方式,以保證灌漿施工。
②、二次灌漿時,應從一側或相鄰的兩側多點進行灌漿,直 至從另一側溢出為止,以利于灌漿過程中的排氣。不得從四側同時進行灌漿。③、在灌漿過程中嚴禁振搗。必要時可用灌漿助推器沿灌漿層底部推動HGM灌漿料,嚴禁從灌漿層中、上部推動,以確保灌漿層的勻質性。
④、灌漿開始后,必須連續進行,不能間斷。并盡可能縮短灌漿時間。
⑤、當灌漿層厚度超過150mm時,應采用豆石加固型高 強無收縮灌漿料。
⑥、設備基礎灌漿完畢后,應在灌漿后3-6小時沿設備邊緣向外切45度斜角以防止自由端產生裂縫。如無法進行切邊處理,應在灌漿后3-6小時后用抹刀將灌漿層表面壓光。
第五步:養護
1、在設備基礎灌漿完畢后,如有要剔除部分,可在灌漿完畢后3-6小時后,即灌漿層硬化前用抹刀或鐵锨工具輕輕鏟除。
2、冬季施工時,養護措施還應符合現行<<鋼筋混凝土工程施工及驗收規范>>(GB50204)的有關規定。
3、不得將正在運轉的機器的震動傳給設備基礎,在二次灌漿后應停機24-36小時,以免損壞未結硬的灌漿層。
4、灌漿完畢后30分鐘內應立即加蓋濕草蓋或巖棉被,并保持濕潤水泥品種的選擇應深入研究工程實際要求,進行全面的分析與評估后合理選用。高堿度的水泥對抗碳化性能有利,但對于抑制堿骨料反應卻并非有利。礦渣水泥、火山灰水泥抗化學侵蝕能力較強,但其抗碳化及抗凍性較差。應根據具體情況,采用水泥性能優良的品種。骨料應符合基本性能要求,嚴格控制骨料中含泥量及有害物質的含量;級配合理,合理的級配可以減小空隙率,在滿足施工及混凝土密實性要求的前提下,可減少水泥用量。。
★灌漿料的產品介紹
①、產品特點
低水膠比
水膠比僅為0.27±0.01;
②產品用途
廣泛適用于各種梁體預應力管道壓漿及設備基礎、錨桿等構件灌漿,同時也可用于核電站殼體灌漿、混凝土疏松、裂縫和孔洞等缺陷修補。
灌漿料的高穩定性
漿體3h自由泌水率和4h鋼絲間泌水率植筋技術是一項簡捷、有效的連接與錨固技術。它是在需連接的舊混凝土構件上根據結構受力情況,確定植筋鋼筋的數量、規格、位置,在舊構件上經過鉆孔、清孔、注入植筋粘結劑,再安放所需鋼筋,使鋼筋與混凝土通過粘結劑粘結在一起,然后澆筑新混凝土,從而完成新舊鋼筋混凝土的有效連接,達到共同作用、整體受力的目的。已有研究資料及工程應用實踐證明,植筋具有性能可靠、操作簡單、施工工期短的特點。均為0;
堿骨料反應一般指水泥中的堿(Alkali)和骨料中的活性硅(S1ica)發生堿硅酸反應(Alkali-Silica-Reacting,簡稱ASR)生成堿一硅酸鹽凝膠并吸水產生膨脹壓力,造成混凝土開裂。堿骨料反應被認為是混凝土結構的“癌癥"。開裂一般表現在混凝土表面形成網狀或地圖形狀裂縫,并在裂縫處滲出白色凝膠物質,而且裂縫寬度越寬,深度越深,裂縫總長越長。如果混凝土結構在潮濕部位出現裂縫,裂縫處有白色物質滲出,而干燥處無裂縫,則可判定為堿骨料反應。一般情況下,堿骨料反應兩年就會使結構出現明顯開裂。
微酸性環境下,水泥基材料性能受到酸液濃度、酸的種類、酸溶液量等多重因素的影響。同時,在相同酸性環境下,不同膠凝材料由于因具有不同的礦物組成或化學組成而具有不同的耐酸性能。此次試驗研究中,采用硝酸和硫酸作為侵蝕介質溶(液試塊體積比約為5:1,且保持不變),只研究pH值對不同砂漿性能水泥用量超過350kg/m3,隨著水泥用量的增加,混凝土泵送阻力增加,所以靠提高水泥用量來提高混凝土的可泵性是不可取的。大面積混凝土的水泥用量最好控制在320kg/m3,如不滿足混凝土泵送要求,可以摻入一部分粉煤灰等量取代或超量取代水泥用量,以增加必要的細粉料量。這樣即降低了水泥用量,又滿足了混凝土的可泵性。的影響。本次試驗研究了不同pH值酸溶液中,砂漿性能變化;以質量損失和強度變化作為表征指標。砂漿采用同一個配合比。試塊成型時,SAC砂漿加入O.3%的硼酸以延緩快硬硫鋁酸鹽水泥的凝結時間。腐蝕試驗過程中,每隔一段時間(2d或3d)調節pH至初始值,以保證侵蝕溶液處于不同的酸性環境下。每周更換溶液,以減弱因溶液中鹽分濃度差異而引起的試驗誤差,且每日攪動以減小溶液的濃度梯度。膨脹性
3h產生0~2%的膨脹,28d膨脹率控制0~2%之間;
灌漿料的早強高強
高耐久性
28d的抗凍等級大于F500,28d的氯離子擴散系數為1.鑒于目前在此領域的研究還不夠全面深入,相關規范條文的覆蓋面還不夠完善,很多工程實踐中的問題只能依靠經驗來處理,大都是借鑒類似工程,缺乏充分的理論依據,因概念模糊或顧此失彼而導致工程事故的也屢見不鮮。限于這方面的實驗研究工作的深度用便于現場實施測量的鋼筋自然腐我國是地震災害多發的國家,處于世界上兩個最活躍的地震帶上,一個是環太平洋地震帶(我國東部地區),另一個是歐亞地震帶(我國西部及西南部地區)。我國地震震害嚴重的主要原因有以下幾個方面:地震區分布廣;震源淺,強度大;建設工程抗震能力低;位于地震區的大中城市多;強震的重演周期長。近年來,我國相繼發生了多次強烈地震,經濟損失慘重的主要原因是房屋破壞、倒塌自20世紀80年代至今,碳纖維纖維增強復合材料(CarbonFiberReinforcedPolymer/Plastic,簡稱CFI沖)是幾年來被廣泛應用于混凝土結構及其它結構加固中的一種新型材料。世界各地對基礎設施加固的、修復和改造的巨大需求,以及CFl沖材料的輕質、高強、耐腐蝕、耐疲勞和施工便捷等優點是該項技術得以迅速發展的兩個主要原因。另外,CFRP材料的成本下降也促進了該項技術的推廣,使得該項技術成為國際和國內工程界的研究熱點。。蝕電位、腐蝕電流密度和混凝土電阻率的電化學三要素來診斷鋼筋腐蝕狀況稱為鋼筋腐蝕EIR綜合評估法(EquipmemIdentificationRegister)。EIR綜合評估法采用多元統計分析中Fisher準則下的判別分析法,建立數學模型。根據已有數據,將鋼筋的腐蝕狀況分為兩類:A類(鋼筋己腐蝕)和B類(鋼筋未腐蝕)。和廣度。25×10m/s;
1d抗壓強度≥30Mpa,28d抗壓強度≥50Mpa;對采用預應力碳安全環保要求需搭設腳手架操作時,應按合格方案搭設和使用。纖維板加固的受彎構件的彎曲性能進行了試驗研究。試件尺寸分為兩種,長度分別為1000mm與4500mm,截面尺寸分別為100x150mm與145×230mm,加載方式采取四點彎曲加載。長1000mm的試件采用截面為0.8×67mm的碳纖維板進行加固,長4500mm的試件采用截面為1.3×90mm的碳纖維板進行加固。兩種碳纖維板材的抗拉強度和彈性模量分別為:1414MPa與111GPa、1284MPa與115GPa。初始應力水平分別為碳纖維抗拉強度的25%,40%及50%。非預應力碳纖維加固的對比試件的破壞模式是碳纖維的剝離破壞:預應力加固試件的破壞模式大多是碳纖維板的拉斷。作者報告稱預應力降低了截面內中和軸的位置,截面大部分混凝土受壓,因此提高了混凝土的利用效率。作者發現預應力碳纖維板可以減小構件的整體變形,從而使得碳纖維更有效率,另外也較非預應力碳纖維承擔更多的荷載。
灌漿料的高流動性
適宜的凝結時間
初凝≥5h,終凝≤24h;
漿體的出機流動度可達10S,60min后流動度仍保持受拉鋼筋屈服后,粘結層劑萬碳壞這種碳壞發生在精貼二層碳纖維布的試驗梁中。同第一種碳壞過程一樣,隨者荷載增加,製縫穩定向上發展。加載到中后期,裂縫開始分出許多從屬裂縫,并發出微小的脆響聲。繼續加載后,可聽到更大的脆響聲,剪時區某處先發生剝高,且在試驗梁側面、豎向製整端部或存在初始缺陷的地方也出現局部割高,剝高現象隨著荷載增加而向兩在實驗室干濕循環實驗中,在第14和16周期之間時,裸鋼筋可能發生腐蝕;經過52個周期(1年)的干濕循環后,裸鋼筋的腐蝕速度較高。鍍鋅鋼筋在前22個周期中,其表面的鍍鋅層不完全鈍化;在22周期以后,足夠量的氯離子加速了鋅的腐蝕。但鍍鋅鋼筋在含氯離子的混凝土中比裸鋼筋有較高的耐蝕性。52個周期(1年)的干濕循環后,復合涂層鋼筋以及環氧涂層鋼筋均可對鋼筋基體提供良好的保護。側發展?v向受拉鋼筋達到屈服以后,剝高現象更加嚴重,梁頂混凝土起皮且出現水平製鑓。在25S以內;
灌漿料拌制水泥漿時,水泥漿中水的含量必須得到有效控制,可用經法定計量機構校準的秤或其它計量器具進行稱量,且其重量誤差應控制在2%以內。主要由水泥、專用外加劑,并輔以多種礦物改性組分和高分子聚合物材料配合組成。具有低水膠比、高流動性、零泌水、微膨脹、耐久性好的特點,施工時,直接加水攪拌使用,經交通部科技司鑒定產品各項性能均達到國際領先水平。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。上饒灌漿料生產廠家|南昌灌漿料供應。