★灌漿料的特點
抗油滲 在機油中浸泡30天后其強度提高10%以上,成型體、密實、抗滲、適應機座油污環保!
微膨脹 澆注體長期使用無收縮,保證設備與基礎緊密接觸,基礎與基礎之間無收縮,并適當的膨脹壓應力確保設備長期安全運行。
耐侯性好-40℃~600℃長期安全使用同等銹蝕條件下,對于相同直徑的鋼筋,其截面損失相近;但考慮其質量銹蝕率的差異,可知相同質量銹蝕率情況下高強鋼筋的截面損失較為嚴重。高強鋼筋具有良好的耐腐蝕性主要是由于高強鋼筋其組成元素中有鈦、釩等能提高鋼筋耐腐蝕性的元素,在相同的銹蝕條件下,高強鋼筋由于其良好的化學組成對銹蝕的抵抗能力更強,所以其質量銹蝕率比普通鋼筋的更小。
早強高強 澆后1-3天強度高達30Mpa以上,縮短工期。
的耐久性200萬次疲勞試驗,50次凍融環境試驗強度無明顯變化。
低堿耐蝕 嚴格控制原材料堿含量,適用于堿-集料反應有抑制要求的工程。
自流態 現場只需加水攪拌,直接灌入設備基礎,砂漿自流,施工免振,確保無振動、長距離的灌漿施工。
★灌漿料的材料檢驗及驗收標準
2.1 實驗室基本條件
2.1.1 實驗室溫度20±3℃,濕度65±5%2.1.2 標準恒溫恒濕養護箱要求保持溫度20±2℃,保持濕度95±2%
2.2 檢驗用儀器及設備:
2.2.1 砂漿攪拌機
2.2二氧化硫、硫酸鹽及細菌的影響。二氧化硫能與混凝土發生中和作用,能生成微溶的鈣鹽,此鈣鹽結晶時結合大量的水,使固相體積大大增加,導致混凝土發根據鋼筋銹蝕過程中各反應物質的質分層澆筑法目前有全面分層法、分段分層法、斜面分層法3種澆筑方案。在時間允許的條件下,可將大面積混凝土結構采用分層多次澆筑,施工層之間的結合按施工縫處理,即薄層澆注技術,它可以使混凝土內部的水化熱得以充分地散發,但這里應該注意的是分層澆筑的間歇時間。若間歇時間過長,則會延長施工工期,另一方面也會使原混凝土對新澆層混凝土產生較大的約束,從而在上下層混凝土結合面產生難以發現的垂直裂縫。若間歇時間過短,則正處于下層混凝土升溫階段,表面溫度較高,這時覆蓋上層混凝土,就會明顯地不利于下層混凝土的散熱,同CFRP布附近的次製縫,。裂鑓產生過程與鋼筋附近的次製體類似,但其原因是由于主裂鑓張開引起的CFRP與混凝土界面粘結局部剝離裂繼而導致的。此製鑓一般表現為短斜製縫,部分與主製l縫;相交,引起混凝土的松動脫落,導致到u離破壞。當加固量較多時,製縫趨于水平。該製繼寬度和高度隨荷載增加逐漸增加針對第二種情況,應采取以下預防和處理措施:在錨墊板與模板間lcm左右的海棉并上緊固定螺絲;在混凝土澆筑過程中,應經常檢查排氣孑L是否 暢通,有無堵塞現象。針對第三種情況。應采取以下預防及處理措施。配置合適的水泥漿。水泥漿的要求可參照:①水灰比一般宜采用0.4O~O。50,摻人適量減水劑時。。時也容易導致上層混早在二十年代,歐美諸國就廣泛采用電阻探頭檢測混凝土結構中的鋼筋腐蝕。通常是在澆筑混凝土結構時就預先埋設這種探頭。這種方法比較適用于均勻腐蝕場合。對于以局部腐蝕為特征的鋼筋,并不能定量檢測鋼筋腐蝕速度。凝土升溫,就有可能超過混凝土要求的最高溫升,從而加大混凝土產生裂縫的可能性。因此,選擇上層混對劃傷的環氧涂層鋼筋,在實驗室干濕循環中,劃痕下的鋼筋的腐蝕活性在前36個周期(8個多月)不斷增加,隨后開始發生腐蝕;而在海洋環境中,劃痕下的鋼筋在前5個月表現出鈍化,6個月后發生腐蝕。對比腐蝕電位以及腐蝕電流密度的結果可知,對于裸鋼筋以及涂覆層劃痕下的鋼筋基體,腐蝕電位測量的結果和腐蝕電流密度具有較好的一致性。但對于沒有和具有劃痕的復合涂層鋼筋,腐蝕電位的數值有時和腐蝕電位的數值不一致。我們知道,腐蝕電位的數值反映了體系的熱力學穩定性,而腐蝕電流密度則反映了實際的腐蝕速度,因而單一依賴腐蝕電位的結果可能會得出錯誤的結論。凝土覆蓋的適宜時間應是在下層混凝土溫度己降到一定值時,即上層混凝土溫升傳遞到下層后,下層混凝土溫度回升值不大于原混凝土最高溫升。量守恒,Fick第一擴散定,Maxwell靜電方程及化學反應速率方程建立了一組徴分方程,并針對海洋混凝土結構的特點給出了鋼筋銹蝕的物理模型;劉西拉等從腐蝕系統的電化學電路著手,根據Nemst公式和歐姆定律,建立了鋼筋銹蝕的物理模型;肖從真以氧氣在混凝土的擴散為主線,從鋼筋表面氧氣消耗著手,建立了混凝土橫向製鑑引起的宏電池腐蝕和碳化引起的。生結晶性腐蝕。若有硫氧化菌存在時,由于反應:S+02+H20_÷H2S04生成的H2S04不但會引起混凝土的堿度降低,而且還會導致混凝土發生結晶腐蝕。同時,硫酸根離子也能對鋼筋直接產生破壞作用,硫酸根的去鈍化作用能導致鋼筋發生腐蝕。.2 抗壓實驗機
2.2.3 抗折實驗機
2.2.4 玻璃板(450×450×5mm)
2.2.5 截錐圓模、模套(高60±5mm)
2.2.6 直尺(量程500 mm)
2.2.7 攪拌鍋及攪拌鏟
2.2.8 千分表及表架
2.2.9 試模(40×40×160 mm 6組)
2.3 檢驗材料
2.3.1 CHIDGE CG中橋灌漿料
2.3.2 水[應符合現行《混凝土拌和用水標準》(JGJ63)的規定]
2.4 檢驗項目及試驗方法
2.4.1 流動度(參見GB8077—87);
2.4.1.1 將玻璃板放在實驗臺上,調整水平。<長期的實踐表明,造成大體積混凝土出現裂縫的因素極其復雜而且是多方面的。其中有:混凝土配合比設網計上的問題:水泥用量大,水泥發熱量大,造成混凝土水化熱溫升過高,內外溫差劇烈;水灰比大,造成混凝土收縮量過大;原材料性能不良,造成混凝土強度低,本身抗裂能力差;炷潦┕べ|龍量上的問題:混凝土攪拌不均勻,振搗不密實,澆筑不合理,混凝土內部形成施工縫;炷琉B筑護上的問題:混凝土養護不及時,風吹日曬,內部與外表溫差過大,外界氣溫驟降時混凝土表面無保溫措施。SPAN style="FONT-FAMILY: 宋體; FONT-SIZE: 10.5pt; mso-spacerun: 'yes'; mso-font-kerning: 1.0000pt">
2.4.1.2 用濕布擦拭玻璃板及截錐圓模、模套,并用濕布蓋好備用。
2.4.1.3 按產品合格證提供的推薦用水量將CHIDGE CG中橋灌漿料充分攪拌均勻,倒入準備好的截錐圓模內,至上邊緣。再次用濕布擦拭玻璃板,垂直提起截錐圓模,使CHIDGE CG中橋灌漿料自然流動到停止。然后測量其最大、最小兩個方向的長度,其平均值即為CHIDGE CG中橋灌漿料的流動度。
2.4.2 抗壓強度(參見GB119—8);
2.4.2.1 GM灌漿料強度檢驗應采用40×40×160 mm試模。
2.4.2.2 將人工攪拌(攪拌時間一般為2min)好的CHIDGE CG中同是I級荷載下的車載試驗,加固后的主梁跨中撓度不但沒有變小,反而增大了,倒是在II級荷載下跨中撓度相對的變化值不是很大。這是因為,這些測量結果分別是以加固前后橋上無車載時的撓度為參照的,加固后的車載試驗撓度測量值中并未計入張拉時的反拱,所以未能直觀地體現出加固后橋梁的剛度優勢。如果取與加固前車載試驗測量時相同的參照撓度,即將反拱值加入到加固后的撓度變化值中。橋灌漿料均勻倒入試模(若采用機械攪拌則分兩次倒入,攪拌時間也為2min),至試模上邊緣,不得振動。高出部分應用抹刀抹平。
2.4.2.3 成型后的試體放入標準恒溫恒濕養護箱內養護。
2.4.2.4 各齡期的試體必須在下列時間內進行強度檢驗;1天±2小時;3天±3小時;28天±3小時;試驗結果取一組6個試體的算術平均值。
2.4.3 膨脹率(參照GB119—88中的有關規定執行)
2.4.3.1 試模規格為40×40×160mm的立方體,試模的拼裝縫應抹黃油,使之不漏水。測量裝置由試模、玻璃板(160×80×5mm)、千分表及表架組成。
2.4.3.加拿大也于1998年制定了相關的碳纖維加固規程一《加拿大公路橋梁設計規范(CHBDC)》【91。2003年,在FRP加固領域又出現了一個新的國際學術團體一國際土木工程FRP學會(IntemationalInstituteforFI心inConstruction)成立了并開展了相關的學術活動。國際上有關FRP及其在工程應用的研究與實踐活動日趨活躍,并形成了研究、開發和應用的產業鏈。2 將拌和好的GM型灌漿料一次裝入試模,拌和各測點應變變化趨勢相近,雖然波動較大,但總體來看,還是具有明顯的收斂趨勢。根據設計的預應力,每根碳纖維板的初始預應變約為6000肛£,而監測數據中,最大應變變化為20.5654斗£,僅為初始應變的0.34%。各傳感器的測量結果均略大于計算結果,但總體趨勢比較接近。可見,一般在l~2個月時間內加固梁會完成大部分時效應變,然后趨于收斂,同時受其它因素的影響時會出現一定的波動?傮w來說,各加固梁總的時效應變很小,對加固效果的影響也很小。物應高于試模邊緣2mm。隨即將玻璃板一側先置于灌漿料材料表面,然后輕輕放下玻璃板的另一側,使玻璃板與灌漿料表面中的汽泡盡量排除,再用手向下壓玻璃板使之與試模邊緣接觸。
2.4.3.3 立即用測量裝置測量試件的初始長度,并將玻璃板兩側露出的GM型灌漿料表面用濕棉紗覆蓋,并經常理解為開裂后混凝土與縱筋之間的摩擦作用是很微弱的。一者混凝土對銅筋的握基在保護層混凝土開製后大大降低,同時由f鋼筋銹蝕產物的填充,也會降低混凝土與鋼筋之間的摩擦。注水,以保持潮碳纖維片材修復補強混凝土結構所用材料,可以分為碳纖維片材和與其相配套的專用環氧樹脂兩大類。其中碳纖維的抗拉強度為建筑鋼材的十倍左右,而彈性模量與鋼材相當,某些種類(如高彈性)碳纖維的彈性模量甚至在鋼材的兩倍以上,且施工性能和耐久性良好,是一種有效的加固修復材料。濕狀態。每日因為纖維的橋接作用阻止了混凝土裂紋的產生,減少了裂紋源的數量和混凝土內部缺陷,改善了混凝土的品質,提高了混凝土的密實性,減緩了外界的腐蝕性介質氯離子、氧氣、水分等擴散到鋼筋表面的速度,降低了鋼筋表面電位差造成的電化學腐蝕速度,提高了鋼筋的耐腐蝕性。測量一次。
2.4.3.4 從測量初始高度開始,測量裝置和試件應保持靜止不動,并不得受到振動。<關于結構卸載問題,筆者認為在加固主梁時,有必要在次梁處設計千斤頂做卸載處理,以使加固后結構協調承所以,充分研究混凝土中鋼筋銹蝕引起襯砌結構耐久性劣化程度至關重要。當前所知,雜散電流、混凝土碳化和氯離子侵蝕三個外部因素是引起地鐵隧道襯砌結構鋼筋銹蝕的主要原因,其中雜散電流的存在而與地上建筑不同。載,防止粘鋼部分應力嚴重滯后,其它情況下,雖然理論上應做卸載沖磨主要是水流中的泥沙作用,我國基于粘鋼法加固橋梁的特點,提出影響粘鋼施工質量的主要技術指標及相應檢查方法,采用9標度法給出各指標量化分值,實現對粘鋼加固施工質量的量化評定。應用層次分析法確定橋梁影響粘鋼加固效果各指標的權重,引入等效降低系數法建立加固效果量化評定體系。以某橋梁加固效果評價為例,驗證該方法的實用性及可行性。驗證結果表明,該方法能夠實現對橋梁粘鋼加固質量有效控制及對加固效果的量化評定,具有一定的工程實用價值。河流多泥沙,和高速水流一起運動時磨蝕直接接觸或臨近的混凝土?瘴g是水工泄水建筑物工作中的水流的一種特有現象,混凝土局部受到不規則的擠壓變形而產生破壞。所以沖磨和空蝕都屬于物理性病害。一般地,沖磨和空蝕是交替而又相互促進的,造成混凝土表面粗骨料裸露,混凝土表面凸凹不平,產生坑洞,進而造成鋼筋外露和鋼筋銹蝕。處理,然而實際操作中十分不便,故一般不做。/SPAN>
2.4.3.5 膨脹率計算公式:εn=(Hn—Ho)/H×100εn:第n天的膨脹率(%);Hn:第n天的高度讀數(mm);Ho:試件的初始讀數(mm);H:試件高度(H=100mm);試驗結果取一組三個試件的算術平均值,精確到10-2。
2.4.4 鋼筋粘結強度(參照YBJ222—90中的有關規定執行)準備內徑為ф45mm鋼管,將其底部封好。分別將直徑6mm圓鋼或16mm螺紋鋼插入中央。埋設深度為15d(d為螺栓直徑)。然后將攪拌好的灌漿料倒入鋼管內并抹平。養護到規定齡期28天,再進行強度檢驗。
2.5 驗收標準
按Q/LYS159—2000《高強度無收縮自流灌漿料》標粘鋼加固技術與以前一般加固手段相比,具有以下特性:膠粘劑干固時間短。一般構件加固2天后即可正常受力,加固時不影響正常使用,只需卸除構件承擔的一定載荷,施工快速。施工工藝簡便。只需對被加固構件的體面進行處置,用粘結劑將鋼板與之牢固地粘結到一塊,就能使鋼板與原構件合二為一,且不需大設備,經濟性好,操作簡單。膠結劑的粘結強度比混凝土、石材等的好,可以使增強體與原結構合二為-,共同抵抗內力作用。粘結鋼板讓構件構件的斷面尺寸和重量變化較小,不影響建筑物的使用建筑凈界,基本不損壞構件原體表面和結構自身。加固效果顯著,主動承擔了鋼筋的一部分任務,可改善剛度、受力性能,而且通過粘貼鋼板可抑制混凝土的裂縫受剪構件外貼鋼板的應變隨荷的變化情況,由于受裂縫位置及數量等影響,鋼板應變的發展具有一定的隨機性,從鋼板最大應變的變化可以發現,在加荷初期試件梁并未出現裂縫,鋼板的應變為零,隨著荷載的增大,梁出現裂縫,鋼板出現拉應變,隨著荷載的繼續增大,鋼板的拉應變也逐漸增大,但隨后由于錨固端的枯結滑移或局部錨固破壞,鋼板的應變出現下降甚至退出工作,鋼板并未充分發揮作用。構件破壞時,外貼抗剪鋼片都沒有達到屈服強度。這說明對于抗剪加匿來說端頭錨固同樣重要,必要時可采用附加錨固措施以保證抗剪加固的效果。產生或使已有的裂縫制約繼續擴大化,提高了原構件的整體承載能力和通行能力。粘鋼加固主要適用于常規混凝土梁的增強,除懸臂梁外側范圍外。要求加固部位混凝土基本處于延性狀態,標準抗壓強度酸雨、城市排污、硫鐵礦等都會形成酸性環境從而對混凝土材料形成破害。煤、石油等化石燃料的消耗、冶煉和水泥生產等工業活動排放大量S02和NOx等氣體,其中S02的排放量己躍居世界第一位。我國南方存在嚴重的酸雨污染,已是世界三大酸雨區之一;工業酸性廢水、大量生活污水的排放在細菌作用下生成高濃度的酸性物質會對城市混凝土排污管道形成侵蝕,如果這些混凝土制品排污管不能夠抵抗此類酸性環境的侵蝕,那么不僅會造成巨額的經濟損失,更會影響到公民的正常生活,影響社會秩序。大于20Mpa。另外抗剪強度在梁的端頭位置達到一定要求。準驗收,按由湖北中橋參與編寫的新橋規(JTG/T F50-2011《公路橋涵施工技術規范》)關于預應力孔道灌漿壓漿技術規范執行。
★常用地腳螺栓形式
1、主要用于:預應力孔道灌漿,灌漿層厚度10mm<δ<150mm<塑料簿膜、草袋,巖棉被可作為保溫材料覆蓋混凝土和模板,覆蓋層的厚度應根據溫控指標的要求計算。并可在混凝土終凝后,在板面做土圍堰灌水5-l0cm進行保溫和養護。水的熱容量大,比熱容為4.1868KJ/(KJ℃),覆水層相當于在混凝土表面設置了恒溫裝置。在寒冷季節可搭設擋風保溫棚,并在草袋設置碘鎢燈。因為土是良好的養護介質,所以應及時回在鋼筋混凝土梁中,受拉區一旦出現裂縫,原受拉區混凝土所承擔的拉力幾乎全部轉移給鋼筋承受,鋼筋應力驟增。因此,預裂梁的配筋率將直接影響碳纖維布參人受力的程度。下面針對FA4、FB1、FC1的試驗結果分析配筋率對加固效果的影響規律。填土。在大體積混凝土拆摸后,應采取預防寒潮襲擊、突然降溫和劇烈干燥等措施。采用二次振搗技術,改善混凝土強度,提高抗裂性。當混凝土澆筑后即將凝固時,在適當的時間內再振搗,可以增加混凝土的密實度,減少內部微裂縫。但必須掌握好二次振搗的時間間隔(2h為宜),否則會破壞混凝土內部結構,起到相反的結果。/SPAN>設備二次灌漿,混凝土梁柱加固角鋼與混凝土之間縫隙灌漿,稱謂混凝土縫隙修復專用灌漿料! 2、主要用于:地腳螺栓錨固、裁埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿。有抗油要求的設備基礎二次灌漿稱謂普通灌漿料。
3、主要用于:負溫下強度增長快,無受到凍害影響,地腳螺栓錨固、栽埋鋼筋,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿當前必須采取有效措施加強防治混凝土碳化效應的科研工作,并將成果應用于工程實際,同時對仍在使用的工程要進行全面調查,對臨近破損的鋼筋混凝土結構盡早進行有效的加固處理。隨著高強混凝土的大量應用,再加上對輕質、大跨度的追求,設計時混凝土保護層較薄,或者施工質量的低劣造成混凝土保護層出現裂縫,這就使得碳化前沿很快達到鋼筋表面,進而鈍化膜失去堿性的保護,一旦鋼筋表面滿足電化學銹蝕的條件,鋼筋銹蝕就會迅速發展。而這時一旦接觸氯鹽或其它侵蝕性因素,銹蝕就會加劇,最終鋼筋的粘結作用主要由三部分組成:(1)混凝土中水泥膠體與鋼筋表面的化學膠結力,其值較小,僅在受力階段的局部無滑移區域起作用,當接觸面發生相當滑移時,膠結力就會立即喪失;(2)鋼筋與混凝土之間的摩擦力,摩阻力是由于膠體固化時產生微膨脹,對鋼筋產生垂直于摩擦面的壓應力或拉應力。接觸面的粗糙程度越大,摩阻力就越大;(3)鋼筋表面粗糙不平的機械咬合作用。光圓鋼筋的粘結強度,發生滑動前主要決定于化學膠著力,發生滑動后則取決于摩擦力和鋼筋表面狀況有關的咬合力。變形鋼筋改變了鋼筋與混凝土|’開J相互作用的方式,極大的改善了粘結作用,雖然膠結力和摩擦力依然存在,但變形鋼筋的粘結強度主要為鋼筋表面凸出的肋與混凝土的機械咬合力,是膠結力的主要組成部分。造成結構的失效。。有抗油要求的設備基礎二次灌漿,稱謂防凍型灌漿料。
4、主要用于:灌漿層厚度≥150mm的設備基礎二次灌漿。建筑物的梁、板、柱、基礎和地坪的補強加固(修補厚度≥40mm)。有抗油要求的設備基礎二次灌漿,稱謂加固工程專用灌漿料。
5、主要用于:精密、大型、復雜設備安裝;混凝土結構加固改造,增強,路面快速修復,稱謂高強無收縮灌漿料。
6、主要用于:高溫環境下專用灌漿料,高溫下體積穩定,熱震性好,設備長期處于高溫輻射溫度500℃環境,灌漿層厚度30mm<δ<200mm的設備基礎二次灌漿,稱謂耐熱型灌漿料。
7、主要用于:施工時間短,2小時強度達C20,立即可運行設備,灌漿層厚度30mm<δ<200mm二次灌漿搶工期工程,稱謂搶修工程專用灌漿料。
8、主要用于:大體積、高精密、復雜結構設備的灌漿需要,所灌漿部位不留死角。具有良好的穩定性,稱謂精密設備特大型重工設備專用灌漿料,稱謂精密設備特大型重工設備專用灌漿料。
★灌漿料的施工
1.基礎處理
清掃設備基礎表面,不得有碎石、浮漿、灰塵、油污和脫模劑等雜物。灌漿前<制漿不規范,稀稠失控或過濾 不好,有硬塊雜物造成堵塞;水灰比不當,如果水灰比過大,不但強度降低,而且泌水率增大,水占空間,被吸收或蒸發后,即形成空洞;外加劑用量不當,如膨脹劑用量過小,膨脹效果就大面積混凝土配合比應通過計算和試配確定,科學地選用材料配比,用較低的水灰比、水和水泥用量;應優先采用水化熱低的粉煤灰水泥配制大面積混凝土。粗骨料種類應按基礎設計的要求確定,其質量除應符合現行標準《普通混凝土所用碎石或卵石質量標準及檢驗方法》的規定外,其含泥量應不大于1.O%;細骨料宜采用天然砂,其質量應符合現行標準《普通混凝土用砂質量標準及檢驗方法》的規定。不明顯,若膨脹系數小于水泥收縮系數,空缺無物補實,就會造成壓漿不飽滿。SPAN style="FONT-FAMILY: Tahoma">24h,設備基礎表面應充分濕潤。灌漿前1h,應吸干積水。
2. 確定灌漿方式
根據設備機座的實際情況,選擇相應的灌漿方式,由于CGM具有很好的流動性能,一般情況下,用"自重法灌漿"即可,即將漿料直接自模板口灌入,完全依靠漿料自重自行流平并填充整個灌注空間;若灌注面積很大、結構特別復雜或空間很小而距離很遠時,可采用"高位漏斗法灌漿"或"壓力法灌漿"進行灌漿,以確保漿料能充分填充各個角落。
3. 支模
根據確定的灌漿方式和灌漿施工圖支設模板,模板定位標高應高出設備底座上表面至少50mm,模板必須支設嚴密、穩固,以防松動、漏漿。
4. 灌漿料的攪拌
按產品合格證上推薦的水料比確定加水量,拌和用水應采用飲用水,水溫以5~40℃為宜,可采用機械或人工攪拌。采用機械攪拌時,攪拌時間一般為1~2分鐘。采用人工攪拌時,宜先加入2/3的用水量攪拌2分鐘,其后加入剩余用水量繼續攪拌至均勻。
5. 灌漿
灌漿施工時應符合下列要求:
1).漿料應從一側灌入,直至另一側溢出為止,以利于排出設備機座與混凝土基礎之間的空氣,使灌漿充實,不得從四側同時進行灌漿。
2).灌漿開始后,必須連續進行,不能間斷,并應盡可能縮短灌漿時間。
3).在灌漿過程中不宜振搗,必要時可用竹板條等進行拉動導流。
4).每次灌漿層厚度不宜超過100mm。
5).較長設備或軌道基礎的灌漿,應采用分段施工。每段長度以7m為宜。
6).灌漿過程中如發現表面有泌水現象,可布撒少量CGM干料,吸干水份。
7)對灌漿層厚度大于1000mm大體積的設備基礎灌漿時,可在攪拌灌漿料時按總量比1:1加入0.5mm石子,但需經試驗確定其可灌性是否能達到要求。
8).設備基礎灌漿完畢后,要剔除的部分應在灌漿層終凝前進行處理。
9).在灌漿施工過程中直至脫模前,應避免灌漿層受到振動和碰撞,以免損壞未結硬的灌漿層。
10)模板與設備底座的水平距離應控制在100mm左右,以利于灌漿施工。
11)灌漿中如出現跑漿現象,應及時處理。
12)當設備基礎灌漿量較大時,應采用機械攪拌方式,以保證灌漿施工。
6、養護
1)灌漿完畢后30分鐘內,應立即噴灑養護劑或覆蓋塑料薄膜并加蓋巖棉被等進行養護,或在灌漿層終凝后立即灑水保濕養護。
2)冬季施工時,養護措施還應符合現行《鋼筋混凝土工程施工驗收規范》(GB50204)的有關規定。
★灌漿料的應用范圍
(1)需高精度安裝的設備設備基礎的一次灌漿和二次灌漿。
(2)鋼筋栽埋及建筑、巖土工程的錨桿錨固。
(3)建筑加固改造工程,梁柱接頭、變形縫、施工縫澆筑。
(4)道路、橋梁、隧道、機場等工程搶修施工使用。
(5) 鐵路軌枕的錨固施工。
(6) 柱濕包鋼加固用于灌注角鋼和柱間隙縫。
★參考用量
參考用量計算以2.28~2.4噸/立方米的依據,計算實際使用量。
混凝土施工期間間接裂縫與結構在正常使用期間因荷載作用引起的裂縫在成因、危害及防治措施等方面均不相同。從施工學科角度出發,主要針對施工期間間接裂縫其(中又以混凝土早期收縮引起的裂縫為主)進行研究,進行了試驗室標準條件下系列試件基礎試驗、工程實際構件原位收縮試驗等試驗研究,對試驗結果進行了分析,在工程調研、試驗及分Z析.的基礎上,提出了預拌混凝土施工期間間接裂縫的綜合防治措施,并成功應用于典型工程實踐。江西豐城無收縮灌漿料價格|江西灌漿料工廠。